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Selection theorems for partitions of Polish spaces
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A. Maitra and B. V. Rao (Calcutta)

Abetract. In this paper we evaluate the (Borel or projective) class of selectors for partltions
of Polish spaces into disjoint closed sets. In particular, wo improve upos the results pertaining
10 a~ partilions which have been obtained recently by Kuratowski and Maitra.

1. Introduction. The problem of the existence of “topologically pleasant”
selectors for partitions of a Polish space into disjoint, non-empty, closed sets, where
the partitions themselves are “topologically pleasant™, has been considered by several
authors. We mention here the articles of Mazurkiewicz (8], Bourbaki (2], and Kura~
towski and Maitra (7).

In this paper we shall be mainly concerned with the evaluation of the (Borel
or projective) class of selectors. The first such result known to us was proved by
Mazurkiewicz ((8] and (5], p. 389). He showed that any partition of a closed subset
of the space of irrationals which is induced by a continuous function defined on it
to a separable metric space admits a coanalytic selector. In the same spirit, Bourbaki
proved that any upper semi-continuous partition of a Polish space into closed sets
admits a G, selector ([2], Chap. 9, Ex. 9(a), p. 262). Kuratowski and Maitra (7}
extended Bourbaki’s result by showing that any a* or «™ partition of a Polish space
into closed sets admits a selector of multiplicative class (x+ 1) (for definitions, see
Section 2).

‘We shall establish in this paper some general results on the existence of selectors,
from which it will follow that the results of Kuratowski and Maitra for «™ partitions
can be improved at all levels a>0. Indeed, if >0, we prove that any «~ partition
of a Polish space admits a selector of multiplicative class «, and, moreover that, in
general, a selector of lower class does not exist.

Our method of defining a selector is as follows. We first define a suitable linear
order on each Polish space such that every non-empty closed set has a first element,
‘We achieve this by using a result of Arhangel’skil 1}, which states that every Polish
space is a continuous open image of the space of irralionals. Using such a conti
open function, we transfer the lexicographic order on the space of irrationals to the
given Polish space. The selector is now taken to be the set of all first elements of
members of the given partition. Our results on the existencs of tractable linear orders
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on Polish spaces seem to be of independent interest and have some connections with
the work of Engelking, Heath and Michael [3].

The paper is organized as follows. Section 2 contains the basic definitions and
notation. Section 3 shows how Polish spaces can be linearly ordered. In Section 4 we
prove the main selection theorems. Section § is devoted to examples which establish
that some of our results cannot be further improved upon as [ar as the class of the
selector is concerned.

2. Definitions and notation. Let X be a Polish space. By a partition of X is
meant a family of disjoint, non-empty, closed subsets of X whose union is X. If Qs
a partition of X, we write x~ y to mean that x and y belong to the same element of Q.
For AS X, the saturation of A with respect 10 Q is the union of all elements of 0
which have a non-empty intersection with 4. A® will denote the saturation of A.

Let L be a o-additive lattice of subsets of X. —L stands lor the family of com-
plements of sets belonging to L. A partition Q of X is said to be a L™ (resp. L*)
partition just in case the saturation of every open (resp. closed) subset of X with
respect to O belongs to L (resp. —L). In particular, if L is the o-additive lattice
of subsets of X of additive class a, a L™ (resp. L*) partition of X will also be called
aa” (resp. a*) partition. Note that 07 (resp. 0*) partitions of X are just the lower
semi-continuous (resp. upper semi-continuous) partitions of X. A partition is
continuous il it is both lower and upper semi-continuous. A partition Q of X is said
to be analyric if the saturation of each open subset of X with respect to  is analytic,
A selector for a partition Q of X is a subset S of X such that § intersects each element
of 0 in a single point.

A linear order on X is an anti-reflexive, transitive and connected binary relation
on X with field equal to X, Let R be a linear order on X. If A is a non-empty subset
of X, then x is said to be the R-first elemurl of Aifxed and Vy(yeA nnd
¥ # x—=XxRy). xisa fump point of Ril x has an i dii . The i
successor of x, if it exists, is clearly unique and is denoted by x*.

Denote by N the set of positive integers. The usual order on N is denoted
by <. For each k € N, P, is the set of finite sequences of positive integers of length k.

©
Set P = |J P,. For pe P and 1 iglength p, p, is the ith coordinate of p. We define
k=i

a partial order <4 on P as follows: for p, g€ P, p< ¢ if length p<length ¢ and there
is i such that 1<iglength p, p; = ¢, for 1<j€i—, und p;<q,. Writc p€,q to
meAn p< g Of p = q.

Wesel £ = N, the set of infinite sequences of positive integers. Equipped with
the product of discrete topologics on N, Z b ah ph of the space of
irrationals. If o€ X and {e N, o; will denote the ith coordisate of 0. For pe?,,
Z(p) is theset of all o € £ such that (g, ..., 3,) = p. The lexicographic order on X wilt
be denoted by <*® and is defined as follows: o<®r if there is 8 kg N such that
o, =1 for 1€igk—1, and 0,<%,. c<*v means that e<®troro e,

Throughout, the real line is assumed to be equipped with the usual topology,
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while subsets of the real line are endowed with the corresponding relativized topology.

11 X is topological space, F(X) denotes the collection of all non-empty closed
subsets of X. F(X) is endowed with the Victoris topology.

3. Linear orders on Polish spaces. The present section deals with the problem
of defining suilable linear orders on Polish spaces. The resulls will then be used in
the next section to deduce selection theorems.

THEOREM 3.1, Let X be a Polish space. Then there exists a linear order R on X sa-
tsfying the following conditions:

(2) each nom-empty closed subset of X has an R-first element,

(b) for each a€ X. the set {x€ X: xRa} is open in X,

(c) there is a countable set DS X such that

Yx¥y(xRy—( € D)(xRz and “I(yR:))).

Prool. According to a result of Arhangel'skil ([I}. Cor. 4.7), therc is a con-
\inuous open function f on I onto X. Let

Raf{(x,eXxXx: @oef ' ((xDUY re/"(yh)o<* 1))
1t is easy to check that R is a linear order on X.

Let C be a non-emply closed subset of X. Then f~*(C) is a nonempty closed
subset of Z. Let o be the lexicographic minimum of f~'(C). If xo = f(g,), we
assert that xg is the R-first element of C. To see this. let xe C and x # x,. Then
0o /™" ({x}) and £~ ({x} e/ " C). Hence, for any 1 such that f{r) = x, we have:
0, # t and 1€f”'(C). Consequently, g5 <®r. and thus. xoRx.

In order 1o establish (b) and (c). notice that

xRy~ @ peP)(xef(Z()) and (¥ ge PYa<op~y4f(Z(a))) .
so that

R= u(/(z(p»x[x usE@)) .

i)
Since f is open, f(E(p)) is open in X, and X— Uf(}.‘(q)) is closed in X.
Now, lor fixed a € X, the set {xe X: xRa} s the horizontal section at a of R,
So, it follows from the above representalion of R that {x€ X: xRa} is a union of
some of the sets f(Z(p)) and, consequently, open in X.
For peP, set E(p) = X— Y f(Z(9). Let
o

D= izeX: ApeP)zis the R-fim cement of E(p))} .
Plainly D is countable. Mortover, if xRy there s 2 peP sxh that
(x,y) € f(Z(p)) x E(p). Taking = to be the R-first element of E(p). we get: xRz
and “1(yRz). This completes the proof.
In Section § we shall give an example Lo show that it is not always possible to
define a lincar order R on a Polish space X so that each non-empty closed subset
4§ — Pundarpents Mathemstices XCII
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of X has an R-first element and also that the order topology induced on X by R bs
coarser than the given topology. However, as the next result shows, this is always
possible for 0-dimensional Polish spaces.

THeOREM 3.2, Let X be a 0-dimensional Polish space. Then there exisis a linear
order R on X sotisfying the following conditions:

(n) each non-empty closed subset of X has an R-first element,

(b) the order topology induced by R on X Is coarser than the topology of X,

(c) R admits at most countably many jump points,

(d) there is a countable set De X such that

VxVy(xRy & Qz)(xRz & zRy)~( z€ D)(xRz & zRY)).

Proof. Being a 0-dimensional Polish space, X can be regarded as a closed subset
of Z ([5], p. 348). Take R to be the restriction of the lexicographic order <® 10 X.
It is well known that R satisfies conditions (a) and (b) above.

For o, 1€ I such that 0<®1, let J(o, 1) = {e€ Z: 0<®@<®1}. Let D be the
family of all intervals J(o, 1) such that g.t€ X, o<®tand J(e. NN X =0. I
J(o,, 1)) and J(s,, v;) belong 10 D, then, as is easy to check, (0,.1,) = (0;. 1)
or J(gy.1,) 0 J{g4,1;) = 9. Now each J(o, t) e D is non-emply and open in I,
Consequently, since I is separable, D is ble. The left end-points of intervals
in D are just the jump points of R. Thus, we have checked condition (c).

Finally, for (d), it suffices 10 Jet D be any countable dense set in X. Such that
8 D works [ollows [rom (b). This completes the proof.

4. Selection theorems. Using the results on lincar orders established in the
Pprevious section, we shall first prove lwo general selection theorems, from which the
results on selectors for a* and «” partitions will follow.

THEOREM 4.1, Let X be a Polish space, and let L be a o-additive lattice of sub-
seis of X containing all closed subsers of X. If Q isat L™ pariition of X, then there is
a selector § for Q such that Se —L.

Proof. According to Theorem 3.1, there is a linear order R on X and a countable
subset D of X satislying conditions (8), (b) and (¢} of Theorem 3.1. Define SG X by:
x € S (Vy)(y Rx=Ux~ ).

In other words, S is the set ol R-first elements of the members of the partition Q.
That R-first elements of members of Q exist follows [rom condition (a) of Theorem3.1
and the fact that members of Q are closed in X. Clearly, then, S is a sclector for Q.
Next, notice that
x¢Se@N~x&yRx\ @ ae D)(xe{z: zRa}* & 1 (xRa)).
The last equivalence is by virtue of condition (c) of Theorem 3.1. Now observe
that, for fixed a € X, the set {z: zRa}®, being the saturation of the open set {1: z Ra},
belongs to L; moreover, the set {z: t (zRa)} is closed and 50 nlso belongs to L. Since

X—-S= Li((x: zRa)® n {z: 11 (zRa)}),
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it follows that X—Sisa ble union of sets belonging to L, and. quently
X-SeL. This terminates the proof.

It should be mentioned that Theorem 4.1 has certain similazities with the main
theorem of Section 3 in [7]. However, neilher implies the other. On the other hand,
we are able 1o deduce from our formulation shaiper results about a™ partitions than
in [7].

THEOREM 4.2. Let X be a 0-dimensional Polish space. and let L be a a-additive
lattice of subseis of X containing all clopen subseis of X. If Q is a L™ partition of X,
then there is a selecior S for Q such that Se€ —L.

Proof. Use Theorem 3.2 1o get a linear order R on X and a countable set DS X
satislying conditions (a)(d) of the same theorem. Denote by D’ the set of jump
points of R. According to condition (¢) of Theorem 3.2, D is countable. Now
define SG X as in the proof of Theorem 4.1. As before, S is casily seen 10 be a selec-
tor for Q.

To show Se —L. observe that

x ¢ S@y)(p~x & yRX)
[ ae D)(xe{z: zRa}* & aRx)
or @ae D')xe{z: zRa*}* &aRy)],
50 Lhat
X-§= UD((Z: zRa}* N {z: aRz)) U l{r((z: zRa*}* n {z: aRZ)).

Since the order topology induced by R is coarser than the topology of X, the sets
{z: zRb) and {=: bRz} are open in X for any be X. Furthermore, as cach open
subset of X is a countable union of clopen seis, it follows hat L comains all open
subsets of X. X—S§ is, thercfore, a ble union of el of L, and hence,
belong to L. This completes the proof.

The prool of Theorem 4.2 suggests the lollowing general selection theorem for
jower semi-continuous partitions.

THEOREM 4.3. Let X be a topological space such that there is a linear order Ron X
satisfying conditions (a) and (b) of Theorem 3.2. If Q is any lower semicontinuous
partition of X, then there exisis a closed selecior for Q.

Proof. Let D be the set of jump points of R. Define SE X as in the proof of
Theorem 4.1, so that S is a selector for Q. One easily checks that

X-5= Uz zRa}* A {z: aRz}) v | ({z: zRa*}* n {z: aRz)).
wX “d

Plainly, X—S is open, which completes the proof.

COROLLARY 4.4. Any analytic partition of a Polish space admits a coandlytic
selector.

Prool. The above result follows from Theorem 4.1 by taking L to be the family
of analytic subsets of the given Polish space.
-
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Note that Corollary 4.4 geaeralizes the result of Mazurkiewicz which was
quoted in the introduction.
ComoLLARY 4.5, If a>0, any a” partition of a Polish space admits a selector of
multiplicative class a.
Prool. This again follows from Theorem 4.1. This time one takes L to be the
family of subsets of the Polish spacc which arc of additive class o
For any a, an a* partition of a Polish spece is, plainly, an (z+1)" partition.
C ly, an i di q of Corotlary 4.5 is
CorOLLARY 4.6. Any a* partition of a Polish space admits a selector of multi-
Plicative class a+ 1.
Since any 0~ partition of a Polish space is also a |~ partition, Corollary 4.5
yields
COROLLARY 4.7. Any lower semi-continuous partition of a Polish space admiis
a G, selector.
It should be noted that Corollaries 4.6 and 4.7 were first proved by Kuratowski
and Maitra [7). Their method of prool, however, is quite different from ours
As will be seen in Sextion S, a lower semi-continuous parlition of a Polish space
need no, in general, admit even a F, sclector, so that Coroilary 4.7 gives the best
general result for lower semi-continuous partitions of & Polish space. However.
in certain special cases, one can do better than Corollary 4.7. We now proceed to
describc some of these special situations.

COROLLARY 4.8, Each lower semi-continuous partition of a 0-dimensional Polish
space admits a closed selector.

Proof. Take L to be the family of open subsets of the Polish space and use
Theorem 4.2.

Our next result is about partitions whose members are not necessarily closed.
It is clear that onc may define lower semicontinuity for such partitions just as
before, i.c., by requiring that the saturation of each open set be open.

THEOREM 4.9. Let X be a subset of the real line, and let R be the resiriction 10 X of
the usual order on the real line. Suppose that @ is a lower semi-continuous partition of X
into arbitrary sets such that either (i) every element of Q has an R-first element,
or (ii) every element of Q has an R-last element. Then there is a selector S for Q such
that S Is closed in X,

Prool. Assume (i). Let S be the set of R-first elements of members of .
Plainly, S is a selector for (. To show that S'is closed in X, it suffices now to imitate
the proof of Theorem 4.3,

Now assume (ji). The prool is as above, except that we now work with the linear
order R’, which is defined by: xR’y il yRx.

COROLLARY 4.10. Let X be a subset of the real line. If Q is a lower semi-continuons
partition of X into compact sels, then there is a selector for Q which is closed in X.
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The remaining results of this section are again about partitions, all of whose
members are closed.

CoROLLARY 4.11. Let Q be a lower semi-cominuous portition of the real line.
Then there is a selector for Q which is simultaneously an F, and a G, subset of the real
line.

Prool. Denote by Q(0) the (unique) member of Q containing 0. Let X,
= (0, w)—Q(0), so that X, is an open subset of the real line. Let @, be the restric-
tionof Qto X, i.e,let @, ={EnX,: Ee Q& En X, # O}. Itis casy to verify
that @, is a lower semi-continuous partition of X, into closed sets. Indecd, if £€ @
and EnX, 40, then EnX, is a closed subset of rthe real line, for
En X, = En{0, o). Thus, each member of Q, is a non-empty, closed, lower-
bounded subset of the real line, and consequently, has a minimum (relative to the
usual order on the real tine). Hence, by Theorem 4.9, there is a sclecior S, for 0,
such that S, is closed in X,.

Similarly, let X; = (—¢0, 0)— Q(0) and let

0 ={EnX,: EeQ&ENnX, + 0}.

By an argument similar to the above, one can show that there is a sclector S; for 0
such that S, is closed in X,.

Denote by T the saturation of (0, o) with respect to Q. Let §= 8, v
VU (S;=T) u {0}. Tt is clear that S is a selector for O and that S is simultancously
an F, and 8 G, subset of the real line. This completes the proof.

CoROLLARY 4.12. Let X be the unit circle equipped with the usuol topology. If Q is
a lower semi-continwous partition of X, then there is a selector for Q which Is simul-
taneously an F, and a G, subset of X.

Proof. Remove an ¢lement of Q lrom X and imbed the remainder as a subset
of the real line. The desired result now follows from Corollary 4.10.

S. Examples. In this section we present cxamples to show that several of our
results are optimal.

Examrre |. Fix 230. Choose £S[0, 1] such that E contains the point ¢, E is
symmetric about 4, and such that £ is of multiplicative class « but not of additive
class a. Let

Q= {{x}: x e E}u{{x,1-x}: xe[0, 1]-E}.

Claim. Q is a «” partition of [0, 1). For, if ¥ is an open subset of [0, I}, ther
¥® = ¥V u p(V—E), where @ is the homeomorphism x—1—x. Since ¥—E is of
additive class a, so is ¢(¥V—E). Conscquently, ¥* is of additive class a.

Now assume that S is a selector for Q ol additive class a. Since E< S, it {ollows
that 0, 1]-E = ([0, 1]-5)* = ([0, 1])-5) U ¢([0, 1]—S5), so that E is of addilive
class a. Contradiction! Thus, there is no sclector for Q of additive class a

This shows that Corollary 4.5 cannot be improved upon as far as the class of
the selector is concerned,
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ExampLe 2. Let X be the real line. For x, y € X, define x~yif x—y is aninteger.
Then ~ is an equivalence relation on X. Let ( be the set of cquivalence classes of ~
As is casy to check, Q s a lower semi-continuous partition of X into closed sem

Let S be a sclector for Q. For distinet inlepn m.n, (S+m)n(S+n) =

where S+m = {x+m: x€S). Morcover, X = U(S+n) Since X is connected, S is

not open in X, Nor can § be closed in X. For, ll u were, then the real line would be
a denumerable union of disjoint, non-empty, closed sets, which is impossible
(K], p. 178).

This cxample shows that the condition regarding the I of
of the patition in Corollary 4.10 cannot be relaxed. The question now arises if
Corollary 4.10 extends to spaces other than subsets of the real line. The answer is
00, 85 the following example shows.

Exaupie 3. Let X be the unit square [0, 1]x [0, 1), equipped with the usual
topology. Let

Q= {{tx, ). U=x,1=-3)}: (x. )€ X}.
Tt can easily be checked that Q is a continuous partition of X. Denote the homeo-
morphism (x, y)—(1-x,-}) by ¢.

Now let S be a closed selector for Q. Note that S—{(4. )} and o(S—-{(§. H})
form a non-trivial disconnection of X—{(}, §)}. But this is impossible. for, as is well
known, X~{(4,})} is connected. Thus, Q does not admit a closed sclector.

Observe also that there does not exist a linear order on X satislying condi-
tions (a) and (b) of Theorem 3.2. This is now an easy consequence of Theorem 4.3.

It is also interesting to note that there is no coatinuous selection (in the sense
of [3D on F(X). This (ollows from the fact that Q is 8 continuous partition and
that Q admits no closed selector. Indecd. this proves more, viz.. that there is a0
continuous selection on Q, where Q is now regarded as a subset ol F(X) and is endo-
wed with the refative topology inherited from F(X). This should be compared with
Proposition 5.1 in [3].

ExAMPLE 4. A better cxample than the above — belter because the uaderlying
space is onc-dimensional — from which the same ncgative conscquences can be
deduced is this. Take X to be the unit circle endowed with the usual topology. Let @
be the collection of all diametrically opposite two-point subsets of X. It is casy to
check that Q is a continuous partition of X. That there is no closed selector for ¢
follows from the connectedness of X.

EXAMPLE S. Start with circle group C as above. For x, y in the circle group,
define x~y il x = y or x = p+x. ~ is an equivalence relation and the collection
of all equivalence classes of ~ constitutes a continuous partition of the circle group
(indeed, this was just the p idered in Bxample 4). Define F: C+F(C)
by: F(x) = {x, x+x}, so that F is continuous.

Now let X be the product of denumerably many copies of C and equip X with
the product topology. Define G: X~F(X) by: G((x,) = F(x,) x F(x;) x ... Since Fis
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continuous, it follows that G is i The last ion can be

a manner anslogous 10 the proof of Theorem [2 in [6]. Letling
0 = {G((x)): (xJe X},

we see that Q is a continuous partition of X.

Let S be a selector for Q. We now assert that, il K is a compact subset of S,
then K® is nowhere dense in X. To sec this, consider the product {0, 1" x X, where
{0, 1}" is endowed with the product of discrete topologies. Define a function
@: {0, 1" x X=X by: ¢((z.), (x)) = (x,+£,7). It is casily checked that o is con-
tinuous and onto X. Next, if E X, E* = ({0, 1}"x E). Since KES, the restriction
of ¢ 1o {0,1)"xK is oncone. Hence, as K is compact. the restriction
of ¢ to {0, 1)"x X is a homeomorphism onto K®. Now assume, by way of con-
tradiction, that K® is not nowhere dense. So there is a nonempty, connected, open
subset ¥ of X such that V'S K®. The set ¢~ (V) n ({0. 1}" x K) is, then, a non-
emply, connected, open subset of {0, 1) x K. Projecting 9~ '(¥) n ({0, 1}"x X)
to the first coordinate, we get 2 py, d. open subset of {0, 1}", which
is clearly impossible. Thus, K* is nowhere dense in X.

It fullows immediately that S cannot be an F, in X. For il it were, § would be

equal to U K,, where K.'s are compact, But X = §* = U K:, so that the above

eonsndcmnons imply that X is meagre. This contradicis lhe ere Calegory Theorem.

We have thus proved that the continuous partition Q does not admit aa F,
selector. Consequently, our results regarding selectors for lower semi-continuous
partitions (Corollary 4.7) as well as for upper scmi-contiauous partitions (Cor-
ollary 4.6) cannot be improved upon.

ExampLE 6. The following is an example of an upper semi-continuous panition
of a 0-dimensional Polish space which does not admit an F, selector. Take X to be
the Cantor set. Define a lunction f: X—{0, 1] by:

(55)-Is

where £, = 0 or 1. As is well known, / is continuous and onto [0, 1). Let Q be the
partition of X induced by f, i.c., let @ = {f~'({y}): y€ [0, 1]}. Since fis a closed
mapping, Q is upper semi-continuous.

Suppose now that S is a selector for Q. It is casily checked that both S and
X—S are dense in X and that XS is ble, M Vil Kis pact and
KcS, then K is nowhere dense, It lollows that, if S is an F, in X, then S is meagre
in X. Consequently, as X— S is also meagre in X, it follows that X is meagre in itsclf,
which contradicts the Baire Category Theorem.

Thus, results analogous to Corollaries 4.8-4.12 do not hold for upper semi-
continuous partitions.

BExaxpte 7. In Example 1, take the set £ to be of additive class a but aot of
multiplicative class a. It is still d that Eis ic about § and ins §.
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The partition @ defined in Example 1 now b an a* partition. An argument
similar to the one used in Example 1 now shows that Q does not admil a selector
of multiplicative class a. Thus, an «* partition aced nol, in general, admit a selector
of multivlicative class a.

ExAMPLE 8. Here is an example of an analytic partition of a Polish space which
does not admit an analytic selector. The example is related to Sierpifski’s example
of a planar Borel set which cannot be uniformized by an analytic set {[9), p. 138).

Let f be a continuous function on X onto an analytic non-Borel subset Y of [0, 1].
Denote by @ the partition of £ induced by f. i.e. @ = {f"'({y}): ye Y} Asis
easily checked, Q is an analytic partition. Suppose, by way of diction, that S'is
2n analytic selector for Q. Define a function g: E—Z by: g(o) = the unigue clement
of S~ f™'({f(0)}). We now verify thai g is Borel measurable. First, note that, for
any subset £ of Z, g~'(E) = f~Y(AIE 0 5)). Hence, if E is any Borel subset of £,
then g~ '(E) is analytic. So, in particular, both g ~*(E) and g~ (£ - E) are analytic,
whenever E is a Borel subset of Z. It now follows by a well known result of Sous-
lin ([S), p. 395) that g~ '(E) is a Borel subset of Z, whenever E is a Borel subset of I,
Thus, g is Borel measurable. An immediate consequence of this is that S is a Borel
subsct of I, for S = {0 € Z: g(0) = o). Now the resiriction of f10 § is one-one and
J(S) = Y. Hence, Y is & Borel subset of [0, 1] ([5], p. 397), which contradicts our

ption that Y is Borel.

We therefore conclude that Corollary 4.4 is the best possible result concerning
selectors for analytic partitions.
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