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ABSTRACT

Let Xl,Xz,..
Fl(x),FZ(x),...,F (x) respectively. Let U= min(Xl,X

..XP be p random variables with cdf's

2,...,X )
and V = max(xl.XZ,...,Xp). In this paper we study the problem of
uniquely determining and estimating the marginal distributions
FI'FZ""'Fp given the distribution of U or of V.

First the problem of competing and complementary rtisks are
introduced with examples and the corresponding identification pro-
blems are considered whcn the Xi's are independently distributed
and U(V) is identified, as well as the case when U(V) is not
identified. The case when the Xi‘s are dependent is considered

next. Finally the protlem of estimation is considered.

1. INTRODUCTION

Let X ..,Xp be p random variables with cdf's Fl(x),....Fp(x)

1"
respectively. Let U = min(Xl,...,Xp) and V = max(Xl....,Xp). We
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1516 BASU AND GHOSH

shall use the following definitions. Let I be an integer valued
randor variable (I = 1,2,...,p). (U,I) is called an identified
2....,Xp) = xk That is, we

observe the minimum U and know which coordiante of X = (XI,X

minimum if 1 = k when U = mn(xl.x
2

..xp) is the minimum. Similarly, (V,I) is called an identified
maximum if I = k when V = )(k In many physical situations we are
interested in uniquely determining the marginal distributions Fl'
...,F_ given the distribution of U, Vv, (U,I), or of (V,I).

The first problem, that is the problem of determining the
cdf of Xi's from that of U is called the problem of competing
risks and arises in a number of different contexts, as given
below:

(a) An individual may be subject to p causes of death
CI'CZ""’C . Let xi represent the lifetime of an individual ex-
posed to cause Ci alone (i = 1,2,...,p). MHowever, Xi’s are not
observable and we need to infer about the Fi's based on observa-
tions on U.

(b) Consider a p component system where the components with
lifetimes xl.....x are connected in series. Then only the sys-
tem lifetime U = n\in(Xl,...,XP) will be observable.

(c) Let Xl be the amount demanded and X2 be the amount
available for supply for an elastic good at a given price p.

Then the amount actually transacted in the market will be
U= min(Xl,Xz).

For a bibliography of the literature in this area, see David
and Moeschberger (1978). Associated with the problems of com-
peting risks is a dual problem of complementary risks where we
would like to identify the cdf of Xi from that of V = max(Xl,..-)(P)-

The problem of complementary risks also arises naturally in
a number of physical situations as can be seen from the following
examples.

(d) Consider a p-component system where the components are
connected in parallel. Here system lifetime is given by
V= max(xl,xz,...,xp) which is observable. Although in many situa-
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tions each of the Xi will be known when V is known, there are
situations where only V will be observable. For cxample, during

the flight of a twin engine plane or a space satellite, individual
components {(engines) arc not casy to monitor. liowcver, system life-
time is readily available.

(c) Consider the failure of internal body organs like kid-
neys or similar organs which are duplicated. liere cxact time of
failurc of a single organ may not be known, but that of the second
organ to fail (a fatal incident) will be known.

It will be seen that theories of competing and complcmentary
rishs arc closely related and results in onc arca lead to or sug-
gest similar results in the other area. In scction 2 we consider
the case when the components are independently distributed and U
and/or V are identified. The case when Xi’s are independent and
U(V) is not identified is also considered in this section. The
case of dependent Xi's is discussed in section 3. Finally, in

section 4 the problem of estimation is considered.

2. INDEPENDENT RANDOM VARIABLES

Let X],...,X be indepcndently distributed. If the Xi's are
iid with common cdf FX(X) then it can be obtained trivially from the
cdf FU(x) of U, or Fv(x) of V.

Next assume Xj's are independent but not identically distri-
buted. Berman (1963) has shown that the distribution of the identi-
fied minimum (U,I) uniquely determines that of the xi's.

Since Hax(Xl,...,X ) = -Min(—xl....,~x ), it follows that the
distribution of the identified maximum (V,I) also uniquely deter-
mines that of the Xi's as the identification problem can be re-
stated in terms of the minimum.

In case the extremum (ﬁ or V) is not identified, one can
still uniquely determine Fk(x) under certain conditions. To this
end we consider the following theorem.

Theorem 1. Let F be a family of pdf on R, with support (a,b)

1
which are continuous and are positive to the left of some point A

and auch that if £ and g are any two distinct members of F then
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lim (£f(x)/g(x))

x+a

exists and equals either 0 or @ . Let X ..,xp be independent

.
random variables with respective pdf's fi,fz....,fp in F and
YI'YZ""'Y be independent random variables with respective pdf's
belonging to F. If min(Xl,...,XQ and min(Yl.....Yq) have iden-
tical distributions, then p = q and there exists a permutatjon
(kx'kz""'kp) of (1,2,...,p) such that the pdf of Yi is fki
(i =1,2,...,p).

The proof is similar to the proof of a similar theorem for
maximum given by Anderson and Ghurye (1977).

As an application of the above theorem, one can prove the
identifiability of (univariate) normal distributions.

On the other hand if F is the family of negative exponential
distributions

£,(x) = Xe_xx, x20,

then the conditions of the above theorem are not met and, in fact,
the distributions are not identifiable.

Note, however, if the maximum is observed both normal and
exponential distributions are identifiable.

‘However, there are situations of interest in reliability
theory, where the conditions of the above theorem are not met,
yet the underlying family of distributions are identifiable. We
consider below the family of gamma and Weibull distributions,
each of which contains the exponential distribution as a special
case,

Consider, first, the case of the gamma distributions.

Theorem 2. Let the pdf of X, be given by

-x/Bi ai-l

£(x) = f(x;a;,8;) = Sg—"—, ;> 0,8, >0 (1

B I(oy) G = 1,2,3,4)

where @, snd a, are not both equal to one. Let X; and X, be
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independent random variables. Similarty, let .\3 and X, be inde-
pendent.  Lf the distribution of min(X, ,X,) is identical with

that of m.in(.‘(:,’..'(d). then cither

(ul.uz) = (“3'“4) and (.'SI.BZ) = (ES'BJ)

or, ()
(ul'uZ] = (ud'u?s) and (i"-l.Ezl = (f_‘.H})

Proof. To prove the thcorem we need the following.

Lemma 1.
J o= ){me_y yu_1 dy:'e—x xu-l as  xv a-0 . (3)

Proof of Lemma 1. Suppose first 0 < a < 1. Then integrating by

parts
Je=e Xl [ T )
Similarly,
- - - =2 - -
J=e xxal + (a-1)e e, (u-l)(a-Z)xFe Y yq 3 dy
> e X xa-l R (a—l)e-x xa-Z
- e X xa-l 1+ % 1. (s)

The lemma follows from (4) and (5). Now let m < a ¢ m+l, where
m is a positive integer. Then by repeated integration by parts,
o-m
Yo famy,

-x _a-l X a-2
e X +

J = + (a-1)e " x Lot (a-1).. . (a-m) xfne'

Since 0 < (a-m) s 1, by applying the first part of the proof to
the integral on the right hand side.

g * X&' for large x. (6)
We now prove Theorem 2. Let Fi be the cdf of )(i and

Fi =1 - F.l , 1 =1,2,3,4 . By the conditions given
T F = F. F . 7
Fl{x) Fy(x) = Fo(x) Fy(x) for all x 7
Differentiating the logarithm of both sides with respect to X,
£, (x) . £,(x) ) £.(0) . £,(x)

R0 R Ko F

for all x. (8)

Making x + « in (7} and using Lemma 1, we have
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1 1 1 1
— ¢ o = = 4 (9)
Bl BZ I.’:3 ('3‘1
al+02=u34u4, (10)
and
eul_lsuz-lr(u )(a,) = Bas-la%_‘r(u M ia,) (11
2 Pite; 3 B 3T eyl )
Also note,
lim F,(x) = 1, (12)
x+0 J
and
fi(x) 0, if oy > a
Unrto T e (13)
J ¢ij, ifa, = o
wiiere

ey = (858
Now consider the case when a; < a,. Lividing (8) throughout
by fl(x) and making x + 0 we note, in view of (12) and (13}, that
the left hand side of (8) tends to 1. So the right hand side of
(8) must also tend to one. By (13) this implies at least one of

ags a, is equal to a,. Without any loss of generality, let ag=0).

1
Then, by (10) @, = a, > a;. Also, by (13), we have c ) = 1.
Sinc = = F = F
e oy g we fust havi Bl 83. Hence, Fl(x) FS(X) and
hence, from (7), Fz(x) = Fd(x). This proves the theorem when
a < a,. The case o > a, can be treated similarly.

17 &y but the common value is

not equal to 1. As before if we divide (8) throughout by fl(x)
and take limits as x * 0, the left hand side tends to a constant;

Now consider the case when o

by (13) this implies at least one of 05, 04, S3Y @ equals a_.

Then o, equals a, by (10). Thus

3 1

a; =@, = az = a, = a, say.
Hence, by (11)
a-1 _ a-1
(BIBZ) = (8384) , where a=1.
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That is, 8,8, = 8 By This and (9) imply one of 83, g, cquals 8

3
and the other vquals B,. This compgletes the proof.

4 1

Let Xi’\vli(pi.ei). That is let xi follow the Weibull distribution
with density function

Py
p, p-1.7" /8;
fi(x) -gi—x x>0, (8,.p, > 0)
tlere
P
— -x /8, _ Py bl
Fi(X) =1-F(x)=e » F()/F (x) = gi— x ’
and as x + 0,
8./6.,p. = p
fi(x) ) 1 1 )
= 0 ,p >pP. (1)
£.(x) L
« N Pi < pj

_Theorem 3. Llet Xi'bW(pi,ei), (i = 1,2,3,4) be independent Weibull random
variables. If the distribution of min(xl,XZ) is the same as that of

min(XS,Xa) , then either

B8 = (080, (P10, = (5,,8,) .
or

(py28)) = (pys8,) and (p,.8,) = (py,8,)
provided P, # PZ'
Proof. Since ?l(x) fz(x) = FS(X) _l-:d(x) for all x, we have, taking logarithm
of both sides,

Py P, Py Py
X ’°1 + X /e2 =x /03 + X /94 for all x (15)

Since Py ¥ pz, suppose without loss of generality P, < pz. Considerin,
the behavior of (IS) as x+ 0 and x + =, we get P, = min(ps,pd) = Py sy,
and p, = mu(pS'Pd) = Py» SaY. From the linear independence of powers of x,

we now get from (15), 6) = 84, 0, = 94. This completes the proof.
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Remark. Let Py = Py = p, sy, Then hy transforming to Yi = XE ,
one sees from the case of exponential distributions that the scale
parameters el, 92 are not identifiable. In fact this is also

clear from (15).

3. CASE OF DEPENDENT RANDOM VARIABLES

In this section we consider the case when the Xi's are depen-
dent with joint cdf F. Basu and Ghosh (1978) have shown the dif-
ficulty in identification based on U or (U,I) unless the class of
distributions is restricted to a specific parametric family.
Results for some special cases are described below.

Basu and Ghosh (1978) have considered identifiability of a
number of bivariate families of distributions useful as models in
life testing based on the distribution of U or that of (U,I).
These include the bivariate exponential distributions of Marshall
and Olkin (1967), Block and Basu (1974), and Gumbel (1960). In
particular, they showed that parameters of Marshall-Olkin distri-
bution are identifiable given the distribution of the identified
minimum (U,I). However, the parameters are not identifiable if
only U is observable. For the Block-Basu (1974) and the Freund
distribution (1961) the parameters are not at all identifiable,
even when the identificd minimum is available. Similar results
for the identifiability of parameters based on (U,I) have been
obtained for the two bivariate exponential models proposcd by
Gumbel. However, if only U is observable, none of the above models,
except the following is identifiable.

Consider the following bivariate distribution of Gumbel:

-A A

x - -A x-Ay
FOuy) = (1-e Y)(1-e 2

y
2)(1+>.12e‘ ) . (16)

Theorem 4. If U is observable, A,., is identifiable and (Al.xz) is

12
identifiable up to a permutation. That is, if (X).X,) and (X;.Xé)
follow the bivariate exponential (16) with parameters (AI.AZ.AIZ)

and (A{sA3,A{,) Tespectively, and if min(X,,X,) and min(X{,X3)
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have the same distribution then cither (A]. b

or (Ap>hyedp,) = (A5A1sA05)-

2h2) T O
We omit the proof.
Next assume (Xl.Xq) follow the bLivariate Weibull distribution
defined by

F - . ", P2 p, P2
F(xl,xz) = P(X2%,.X,0%,) = exp -(Alxl »xzxz *Amaxx,lx, )l
By similar arguments onc can show that if U is observable r and )
arc identifiuble up to permutation. However, Al and )‘2 + XP or
)‘2 and )‘l + AlZ are identifiable.

Because of the inhecrent physical interpretuation buscd on the
minimum, the Marshall-Olhin and the Bloch-Basu model are not suit-
able models for the complementary risks problem. llowever Gumbel's
bivariate exponential distributions are still suitablc as models.

Consider the first model with cdf

A x -Azy L2 3% S Azy - Alzxy

Flxoy) =1l-e ' e ve ! an

Unlike the case of minimum, we can prove the following general
theorem,

Theorem 5. Let V = max(Xl,XZ) be obscrvable, and (Xl,XZ) follow
the bivariate exponential distribution with cdf (17). M2 is
identifiable and (Al,klz) is identifiable up to a permutation.
Proof. Let max(xl,XZ) and max(xl’,xg) have cdf of the form (17)
with parameters ()‘I'AZ’)‘IZ) and (Al’,)\i.)‘l'z) respectively. Without
any loss of generality, assume min(xl,)\z) = Al, and min(Al’,Aé) = )‘;.

Since P(Xl < X3 X2 < x) = P(XI < x, X; < x}, we have, from (17),

-Ax “Aox (A A4 X)X -A0x -Alx ~(ATHAZHAT X)X
el*ez_e1212 =el§92_e1212

N xfor all x . (18)
Dividing both sides by e ! and taking the limit as x + @, the

left side tends to 1. The right side must tend to 1 also. Since
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0 < Af < AL < Af + Ai + Aizx, we must have Al = 7. Elim{nating

2 1
equal terms from both sides of (18), and dividing by e ,  we
obtain, using similar arguments
xz = xz .
And hence,
Mz T e

Identifiability of the bivariate normal distribution, using
the observed mfnimum, has been considered by Basu and Ghosh (1978)
and Nadas (1971). If X follows the normal distribution, so does
-X and hence the identification problem for the maximum can be
restated in terms of the identification problem for the minimum,
Also, any bivariate distribution obtained through strict monotone
transformation of normal variables will be identifiable. The

bivariate lognormal distribution is thus identifiable.

4. ESTIMATION OF PARAMETLRS

Estimation of parameters based on (U,I), the identified
minimum has been considered extensively (see David and Moeschberger,
1978). Basu and Ghosh (1978) have considered the problem of esti-
mation of parameters based on U alone for the bivariate normal
distribution.

As remarked Lefore, the case of the estimation problem for
the normal distribution based on V reduces to that of U. We shall
therefore consider some of the other models.

The pdf of V, assuming independence, is given by
fl(t)Fz(t) + fz(t)Fl(t), so that the likelihood function can be
readily obtained. Hence the likelihood equations can be written
down easily and solved numerically.

In the case of Weibull distributions if the shape parameters
are assumed to be equal, that is if Py = pz = p, the parameters
can be estimated more readily using the methods of moments. The
rth raw moment of V is given by

T r T

BV = g = 11+ 2+ of - (8, + 0P . (19)
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Method of maximum likelihood and method of moments can be
used for the cxponential and other distributions including the cases
when the random variables are dependent. In particular, method of
moments can be readily used for the two madels proposed by Grumbel
(1960).
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