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ABSTRACT

A wide class of block designs admitting a simple analysis has
been considered. The statistical properties of such designs have
been indicated and the problems relating to their characterization

and construction have been investigated.

1. INTRODUCTION AND PRELIMINARIES

Consider a block design with the usual vxb incidence matrix N.
Let rl,--~,rv be the replication numbers and kl.---.kb be the block
sizes. Let

R = dLaq(rl,'--.rv}. K = diaq(kll"':kb),

R1/2 1/2' 'zi/z}, R—1/2 - (Rl/2)-1'

= diag{r

L(vﬂl) 1

= (1,-+-,1)', JI=11', C=R-NK N.
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In the context of a block design, the concepts of various kinds
of balancing, e.g., variance-balance, efficiency-balance, partially
efficiency-balance, stc., are well-known (cf. Puri and Nigam (1977),
Califiski, Ceranka and Mejza (1980), Kageyama (1980), Puri and Kageyama
(1985)). Racently, Das and Ghosh (1985) considered generalized effi-
ciency-balanced (GEB) designs which are the same as p~}-balanced
designs introduced by Califiski (1977). This paper considers D_l-
partially efficiency-balanced designs. It is seen that D-l-putinny
efficiency-balanced designs with at most two efficiency classes admit
a very simple analysis. The problems relating to the characterization
and construction of such designs are investigated.

In the following, for any diagonal matrix D with diagonal ele-

ments &,,-'*,d , all positive, we shall write p!/? - aiag {dll2 eeey,
6‘11/2) ana 0% o (01371,

DEPINITION 1. Given a diagonal matrix D with diagonal elements all
positive, a block design is called a D-l-partially efficiency-balanced

design with m efficiency classes, ox simply a D-)'-m(m) design, if

-1/2‘:0—1/2

the matrix D has exactly m distinct positive eigenvalues.

Note that the matrix D-:UZCI.)_:L/2

of the matrix F used by Pearce, Califiski and Marshall (1974). Clearly
for any positive definite D, every connected block design is a D-l-
PEB(m) design with some m < v-1 (cf. Califiski and Ceranka (1974)).
Hence, in this paper we consider only D-l-m(m) de .gns with m < 2.

(= W, say) is a generalization

From a practical point of view, such designs have nice statistical
Properties, as it will be explained below. For a D “-PEB(m) design
with o £ 2 a spectral decomposition of W yields

W o= oA +ap 1)
where ul,u are poasibly distinct positive eigenvalues of W, Ai -
zj-l 213213 + Py is the multiplicity of @, and P—il"”’ed.pi are the
corresponding orth 1 eigen 1 of W (i=1,2). Hence, writing

= J1.,7, and 4, = tz(D), it can be seen that for i = 1,2, the
atﬂciency factor for every treatment parametric contrast in the
4th efficiency class, defined as the class spanned by the contrasts
/2213 {1 : 3 : pi) , equala (do/“)ai when the efficiency is measured
relative to an orthogonal design having a replication vector (n/do)Dl
(see Pearce (1970)). Purthermore, the best linear unbiased estimator
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of every D_l-nomlized contrast from the {th class has a variance
02/01. i = 1,2, where 02 is the error variance (cf. Califski (1977)).
An appllcation of D_1~PZB(1) designs for orthonormal contrasts has
been discussed by Gupta (1987), with two examples.

The class of D_I-PEB(M\) designe with varying D but m £ 2 is
fairly large and includes all variance-balanced {with D = I), effi-
clency-balanced (with D = R), partially efficiency-balanced (m ¢ 2;
with D = R), connected two-associate partially balanced incomplete
block (PBIB) {with D = I), and generalized efficiency balanced (of
Das and Ghosh (1985), i.e. with any D) designs. Also all C-designs
(cf. Saha (1976)) belong to this class (with D = R). 1In the next
section, a characterization for D_l—PBB(m) designs with m £ 2 is
derived. It will be seen that for such designs one can obtain a
g-inverse of the C-matrix without an explicit determination of al'
ay. Al and Az. The resulting computational simplicity is likely to
be helpful to an applied statistician. The constructional aspects
are taken up in the last section.

Throughout the present paper, we shall deal only with connected
o l-pEB (M) designa.

2. SOME RESULTS ON D-l-m(m) DESIGNS WITH m < 2

THEOREM 1. For a positive definite matrix D = diaq(dl,-",dv) a
block design is a D-l-PEB(m) design with m < 2 if and only if there
exist constants Y,6 (6>0) such that

w2 - yw + 8(I - d;lgllzdl/z‘)
~1/2cp1/2, 4, = (o),

PROOF. 1If. Obviously d;llzg]'/z

corresponding to the eigenvalue 0. Let E 0} be any eigenvector
of W which is orthogonal to d;]'/zg_l/z. Let A be the eigenvalue
coxresponding to the eigenvector §. Then postmultiplying both sides
of (2) by § we have

= Q {2)

where W = D a% - al/?, 6l

is a normalized eigenvector of W

02 YA 4 6)E = 0 which implies A% - yA + § = O.
This shows that the non-negative definite(n.n.d.) matrix W can have
at most two distinct non-zero, i.e., positive, eigenvalues. Further-
wore, if 6>0thanboththamouo!lz—yk+5-Oarepoaldve
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(Y and § must be non-negative as W is n.n.d.; 6> 0 implies then
Y>>0}, and it follows that every eigenvector of W which is orthogonal
to d;llzgllz corresponds to a positive eigenvalue. Hence rank(W) =
v-1, i.e., the design is connected. This proves the 'if' part.

Only if. Suppose the design is a D_I-PEB (m) design with m < 2. Then
“1/2057Y/2 (o w) yields

W = all\l + a,A_,

the spectral decomposition of D

272
where a} and uz are positive not necessarily distinct and where Ao =
do-lgl/ d_1/2', Ay A, are symmetric idempotent and such that
AO + Al + Az = I, A°A1 = A°A2 - A1A2 =0, 3
1/2

with do and d being defined as before. Hence we obtain

W= al(I—Ao—Az) + O R, i.e., W- al(x-Ao) = (a,=a, 1A,

from which squaring both sides and after some simplification using
(1) one gets w - W + 6(1-A°) = O, where Y = a,+a, and § = «,a,.
Note that oy @, > 0 and hence § > 0. This proves the 'only if’
part and completes the proof of the theorem. ]

The next theorem presents a compact formula for a g-inverse of

1

the C-matrix in a D -PEB(m) design with m £ 2.

THEOREM 2. Consider a D_l-PEB(m) design with m < 2. Let y,6 (§>0)
be constants such that

W -y o+ 81 - &t %a? = o 19

Then a g-inverse of C is given by

& = oY% - a3t - dmpM2
oYl _ -l 11 -1
Jw 4,a) - g0 @,
where W is as defined in Theorem 1.
PROGE. Let W = (v/8)(r - ag'a*/%aY/?) - (1/6)W. By (4), and the
fact that W 1/2

= 0, one has by direct multiplication,

WA = I-daldllzﬂl/z' —> Wiw =W ==> CCC=C,

which completes the proof. Incidentally, it may be noted that C, as

—1/2(6;11\ + a2a 3072, uhere s Oy Ao By

given above, equals D 1 5 By

are as in (1). 0
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Theorems 1 and 2 make the task of analyzing a D-I-PBB(m) design
with m 5 2 rather simple. Once D is known, it is not necessary to

-U2CD-1/2 and Theorem 2 is

have a spectral decomposition of W « D
enough to yield an explicit expression for a g-inverse of the C-matrix
of the design. In particular, all connected PBIB designs with two
associate classes are D-I-PEB(Z) designs (later, we shall see that
even PBIB designs with more than two associate classes can be D_l—
PEB(2) designs) with D = I. For such designs (i.e. with D = I), by
Theorem 1, there exist constants Y,8 (6> 0) such that
2oyerba-vin=o,

the determination of Y and § being straightfoxward {one has just to
solve two equations in two unknowns). Then a g-inverse of the C-
matrix follows easily from Theorem 2. This makes the task of analy-
zing such a design very simple as one does not have to take care of
the details of the association scheme at all.

califski (1971) and Saha (1976) considered C-designs which have
the merit of admitting a simple analysis. Unfortunately, however,
the class of C-designs is not very large (in particular, there are
many two-associate PBIB designs which are not C-designs). In this
regard, the concept of D-I-PEB(m) designs with m : 2 is helpful since
it extends the class of C-designs to a much wider class while retain-

ing a simplicity in the analysis.

3. SOME CONSTRUCTION PROCEDURES

In this section, we shall investigate the construction proced-

ures for and combinatorial properties of some D-l-PEB(m) designs with

1] : 2. MNow, D_l—PEB(l) designs are precisely the same as the genera-
lized efficiency balanced designs considered recently by Das and

Ghosh (1985) and Kageyama and Mukerjee (1986). We shall, therefore,
give special attentlon to D-l-PEB(Z) designs. Along with each method
of construction we shall specify D and indicate (xl, oy Al, Az (see (1))
to give an idea about the statistical properties of the resulting
designs in the sense described in Section 1. Note that many of these
methods of construction may be employed for the construction of D-l—

PEB(m) designs for general m, although we do not consider that hera.
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3.1. The method bf truncation. Along the line of Cheng (198l1), we
have the following definition: Lat d be a block design with constant
block size k (> 3). Thon for any k' (2 £ k' < k) the 2'th truncation
of d is a design cbtained from d by replacing each block of d by a
set of (:,) blocks considering all possible selection of k' treatments
from the k treatments in a block.

THEOREM 3. Every truncation of a binary D_l-PBB(z) design having a
constant block size k (: 3) and the other parameters v, b, x-x (i=1,
ess,v) is a D_l-m(z) design with parameters v* = v, b?* = b(:.),

-1

x'-r(k 1) and k* = k'.

i 1'k'-
PROOF. Let d, be a binary 0 1-PEB(2) design having a constant block
size k (> 3) and 4, be a k'th truncation of dl (2 £ k' <k). Then
after some algebra, it may be seen (cf. Cheng (1981) for the case
k' = 2) that C, = aC., where C., C_ are the C-matrices of 4., d,,

2 1.5 1’ “2 1’ %2
respectively, and a = (., .} (k/x'). Hence the result follows imme-

diately from Definition 1. Note that the matrices Al' A_ in 4 will

2 2
be the same as those in dl while ul, uz in d2 will be a times those
in dl. u]
The above theorem is helpful in constructing new D-l—PEB(Z)

designs simply by considering the truncations of a known binary D-l-

PEB(2) design having a constant block size. It is easy to extend

Theorem 3 to D-l-PBB(m) designs in general, i.e, with m ; 1.

3.2. The method of supplementation. Let d* be a connected block

design involving v treatments, b blocks and having a common replica-
tion number r and a constant block size k. Let C* be the C-matxix
of d%. Assume that C* has at most two distinct positive eigenvalues,
say 0} and aj, with respective multiplicities g, and g, (91+92=V-1) .
Fox i = 1,2, let l.i be a vxgi matrix such that the columns of Li re-
present a complete set of orthonormal eigenvectors corresponding to
the eigenvalue u; of C*.

To each block of d* add one new treatment which is applied p (2 1)
timas in each block. The resulting design, say d**, involving v+l
treatments will be called a supplemented design (cf. calinsxi and
Ceranka (1974), Puri, Nigam and Narain (1977)) cbtained from d*. 1In
the following, for any positive integers a, a', I. denotea the aXa
identity matrix, 5‘ denotes the a lxvector of l's and "u' - }‘l-.' .
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THEOREM 4. If af # 03 then the supplemented design a** is a o7
PEB(2) design with

1 [s]
v 0
b = [ o' h ] ¢8y TP+ kel /(4 P, i o= 1,2,
, L l/2
Ly 2 Trv vh UL,
= + -
N 0’ ° eyl IR V2 S RS ,
.
LL, 0
Az - .
o o

where h = pb/ui.

PROOF. Clearly d** is connected. Let C%* be the C-matrix of de**.
Then with D and h as above, it may be seen that

-1/2
IRy o,k . _prh7
- - ktp “v © k+p k+p v
0120005172
-1 - .
_P&ﬁl. pokn~t

k+p v k+p
Postmultiplication of the above by (Li,g_) ', (h/(v(wh))}l/z(l"’,
-vh-l/z)' and (L),0)' shows that the distinct positive eigenvalues
of D1/ 2cenp 1271 (rp+kaf) /(k+p), i=1,2, with multiplicities g+
and 9y respectively. Hence the result follows. 0
REMARK. Taking h = pb/u; in D, it is easy to construct a dual version
of Theorem 4. By Theorem 4, one may construct non-equireplicate D_l-
PEB(2) designs by supplementation of connected PBIB designs, with two
associate classes, in particular. Incidentally, in the set-up of
Theorem 4, if a?%

1
-1
block (BIB) design), then the supplemented design d** becomes a D "~

and a; are equal (e.g., if d* be a balanced incomplete
PEB(1) design with D, h and ul as before.

In Theorem 4, we considered only one additional treatment. If
t (> 1) treatments are added to each block of d*, then the resulting
design is not necessarily a n'l-n:a(z) design. However, we can derive
simple sufficient conditions under which the resulting supplemented
design is a D-l-PEB(z) design. This is considered in Theorem 5 below.
Here to each block of d* we add t (> 1) new treatments each new
treatment being applied p (Z 1) times in each block. The resulting
supplemented design, say d***, now involves v+t treatments.
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The following notation will be helpful. Lat Hl - (Li,og !t)"

My = (15,04 L) 's My = (O L)' Q= MM} (4m1,2,3), whele % s

a txt-1 nv}h: such that the columns of L form an orthogonal basis of

the orthocomplemsnt of the space spanned by lt in the t-dimenaional

Buclidian space. Also, for any h > 0, let s(h) represent the norma-

- - -1
1ized column vector {v¢v?(ht) 1}/ -va™1/2 and S(h) =

T
sthistn*.

N

THEOREM S. (i) 1f ui - a; but r o ai, then the supplemented design
d*+* iz a D -PEB(2) dasign with

(a) D= Iv [ ooy = (rpt+ktxi)/(k+pt), a, = a;,
° hIt Al - QI+Q2+S (h), Az = Q]' vhere h = pb/ci,
or with

) D=(I_ O P o= (zpf_+kai)/(k+pt). @, =1, B =Q+,
o] h:l:t Az - Q3+s(h), where h = pb/r.

(11) 1f ai o a; but r = ui, then d#*+ g a D-I-PEB(2) design with
p=[x o c@ =1, a,= (rptikag)/(kept),
o hIt ‘1 = Ql+93+$(h) v “2 = Qz, where h = pb/ui.

(iii) If r, ui, q are all unequal, but pt = k(ui—a;)/(t-ui), then
dses ig a D -PEB(2) design with

D= !' o poay = (x-p«-.+ku;_)/(k+pt), “2 = a*, Al = Ql+S(h).

o nr, R, = 2,40, where h = pb/aj.

PROOF. Clearly d*** ig connected. Let C*"** be the C-matrix of d***.
Hlt.hD-[Ivo].h>0:
[} hIt

it may be seen that

5V 2caaap 12 prn /2

IPt k_ e -
k+pt .t k+pt € k+pt Jee

ﬂ J h-l (pbI_ - .Pi J
k+pt A A t kipt tt

)

Postmultiplication of the above by M., M_, M_ and s{(h) shows that the
-1/2 12 3=

positive eigenvalues of D Cedap are, say,
Py = (XPEFka$)/(kipt), P, = (xpt+kas)/(k+pt), p, = n g,
Py = rP(t+h v}/ (kept)

with multiplicities 9y 92, t~1 and 1, respectivaely.
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Under the get-up of (i), 4f h = pb/ﬂ;. then Ol = 92 = =

q
(rpt*ku;)/(k*pt), o, = ui and the common value of pP,, D, 04 differs

3 1 2
Erom p]. This proves (i-a). The proofs of (i-b), (ii) and (ili} can
simllarly be worked out by noting that under the stated choices of

h, among Py, P, Py, P, exactly two are distinct. n]

4
The sufficient conditions in Theorem 5 have a wide coverage. In

particular, the following corcllaries hold:

COROLLARY S.1. If d* is a BIB design then d*** is a D-l-PBB(Z) design

tor every t{(2> 2), p{(2 1), where D, a,, a,. A, Az are as in Theorem

1 2 1

S(i), (a) or (b).
PROOF. Followa from Theorem S(i). 0

COROLLARY 5.2. If d* is a singular or semi-regular connected group
divisible (GD) design, then de*s* ig a D-l-PEB(2) design for every t
, A, are as in Theorem 5(il).

1 1 2
PROOF. Follows from Theorem 5(ii). a

(: 2}, p(: 1), where D, a,, “2' A
COROLLARY 5.3. If d* is a C-design (cf. Calinski (1971), Saha (1976)),
then d*** is a D_l—PEB(2) design for every t(2 2), p(> 1), where D,

v Az are as in Theorem 5(ii).

PROOF. Follows from Theorem 5(ii) noting that if d* is a C-design

01, 02. A

then the matrix C* has at most one positive eigenvalue different
from r. ]

COROLLARY 5.4. If d* is a connected regular GD design then d*** is a
07'-PER(2) design with D, a., a, A

1 2 1
either pt = nk(Xl-)\z)/(r-Xl) or pt = nk(Xz-Xl)/(rk—lzv). where n re-

' AZ as in Theorem 5(iii) provided

presents the number of treatments per group in d* and )\1, Az are the
usual concurrence parameters in d*.

PROOP. This is an immediate consequence of Theorem S{iii}. a

REMARK. In many situations, given a reqular GD design we can choose
p,t (t2 2) satisfying the conditions of Corollary 5.4. For example,
consider a regular GD design with parameters v=b = 6, r = k = 3,

Xl =2, Az =1, me=3, n= 2 (R 42 in Clatworthy (1973)) for which
nk(Xl-Xz)/(r-Al) = 6 and the first condition in Corollary 5.4 holds
taking (p,t) = (1,6), (2,3) or (3,2). Similarly, the second condition
in Corollary 5.4 holds with some t(: 2) for every regqular GD design
satisfying Xz = 11*1 and rk-)‘zv = 1 (recently, such regular designs
have been characterized by Bhagwandas, Kageyama and Mukerjee (1986)).
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3.3. The mathod of reinforcement. This is analogous to the method
of supplementation. Let d* be as in subsection 3.2. Take t(2 1) new
treatmonts. Apply each of these new treatments p(> 0) times in each
block of d*. Take g(> 1) additional blocks. In each of these addi-
tional blocks apply each of the v treatments in d¢ u, times and each
of the new t tresatments u, times. Here v, 20, u, 20, (ul,uz) [
(0,0) (for otherwise, there is no new block at all) and (p,ul) 1
(0,0) (for otherwise, the resulting design is disconnected). The
resulting deaign, say d, will be called a design obtained through a
reinforcement of do. The following result may be provad proceeding
along the line of the proof of Theorem 4.

THEOREM 6. If t = 1 and a} o af, then the design & la a p l-pER(2)

design with
o=[1 07, a = ({zp+ka})/(k+p)} + u;9, 1 =1,2,
o' n
h — V]
Al - Lllai o + v(ven) va vh Lv
o’ 0 -vh-l/zi"' vzh-l
iy 9
Az = ’
o o
where - 2
wu_g xQ g
o= v L2, .

k+p ulv+u N

REMARK. By Theorem 6, one can construct D-l-PEB(z) designs, which are
not neceasarily equireplicate or proper, by reinforcement of connected
two-associate PBIB designs in particular. 1In the set-up of Theorem 6,
if ui - 05, the reinforced design d becomes a D-I-PBB(I) design with

D, h and 01 as in the theorem.

THEOREM 7. Let t > 2 and Q,, 0,, 0, 5(h) be as in subsection 3.2.
Then
(4] If af =af, then d s a D '-PEB(m) design, m < 2, with

-1
D = [Iv o] ], @) = (xptékay) /(k+pt) + u,g, G, = h  (Ebtu,g),

O hI A) = Q,4Q+s(h), A22- Q4

u,u g kar vu.g
12 1 1

h - xp 12 1

where h v(k+pt + u‘v*th)/(ki\pt M u1v+u2t) *
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Here if a = @& then & 1n a D-]'—PBB(I) design and if a, 1 d a,. then

"
d i a D -PEB(2) design.
(i) If ui o u; but r = ui and ru

design with

, = Pbu;. then 3 1s a b l-pEB(2)

v

D = [1 o ] . oa =rtug, o) (rpr+kag)/ (k+pt) + u,g,
o nr,

A= 91-093+Slh)r A, - Q,
where h = (pb+uzq)/(nulq) .
PROOF. Clearly d is connected. Let C be the C-matrix of d. Then
with D = Xv o , h > 0, it may be seen, as in the proof of
o hI,

-1/2
Theorem 5, that the positive eigenvalues of D /

ED-I/Z are given by,

say.

S m . o =
R (rpt+k01)/(k+pt)_4 u,9. P, (rpt*ko;)/(k'fpt) + u,9,

~1
Py h (pb+uzg). (s)

- -1

P, = ltrp/tktpt)) + (u;u,9/¢u viu e)) Hiesh “v),
the corresponding orthonormal eigenvectors being given by the columns
of Hl' Hz
similar to that of Theorem 5. (0]

' H} and s(h), respactively. The rest of the proof is

COROLLARY 7.1. 1If d* is a BIB design then, for every (2 2) and

every p, n, u,, u,, d is a D_l—PEB(m) design with m : 2, where D, Q

1 2

az, Al' Az are as in Theorem 7(i).

1’

COROLLARY 7.2. If @* is a singular or semi-regular connected GD
design then, for every €2 2), d is a D_’"—PBB(Z) design, provided

ru, = pbu , where D, a., Q, are as in Theorem 7(ii).

2 1 1 2 2
COROLLARY 7.3. If d* is a C-design then, for every e 2), d is a
o l-pEB(2) design, provided ru, = pbu , where D, a,, a,, A), B, are
as in Theorem 7(ii).

,Al,n

REMARK. In the present setting, it is difficult to have nice analogues
of (1i1) in Theorem 5, since the corresponding expressions become
somewhat involved. However, for a given d*, the relation (5) may be
employed for a numerical determination of p, t, Uye Uy, g for which

d becomes a D-l—m(m) design (m < 2) for a suitably chosen D. This
is {llustrated in the following exampla where we consider the re-

inforcement of a regular GD design.
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BXAMPLE. Lat d* be a regular GD design with the usual parameters
v=6, b= 18, r= 12, k= 4, Alue, Az
ui = 11, 0.5 = 21/2 and there are many wuys_ot‘ Eelefting P, t, vy u2,
g for which h may be so chosen that among pl, Qz. p3, 94 at most two

= 7, m= 3, n= 2. Then

are distinct. PFor example, if p=1, t =38, ul-O, u2=1,q=2,

then with h = 12/7, it may be seen from (5) that p) = p, (= 35/3)

and 52 - 54 (= 23/2). Hence the resulting degign is a D_l-PzB(Z)

design with D = Iv 4] ’ u.l = 35/3, a, = 2372, Al = Q1+Q3,
] hxt L Q2+S(h), where h = 12/7.

3.4. Scome other methods. In the preceding subsections we have

described some general methods for the construction of D-I—PEB(m)
designs with m £ 2. The resulting designs are not necessarily proper
or equireplicata. In this subsection, we describe a few more methods
which are less general but may have some utility in particular prac-
tical aituations.

First we consider a method of generalized block complementation.
With notations as in Section 1, let d be an R-l-PEB(m) design with
m £ 2, where R = diag(zli---,rv}, the elements of x = (rl,---,!v)‘
being the replication numbers in d (note that d is then only a PEB(m)
design with m : 2). Let 4 have b blocks, a constant block size k and
an incidence matrix N. Let d be a block design with incidence matrix

~
N = f£rl'~N, {6)

where the £ fa so ; that the elements of N are non-
negative integers:

1

~ =
THEOREM 8. Let d be connected. Then it is a D "-PEB(m) design with

m : 2, for D = (fb-1)R.
PROOF. By (6), it may be seen that the C~matrix of 3 is given by, say,
€ = (®m-1R- {(b-26/(-1) W err - (8-1 -0,

where C is the C-matrix of d. Hence with D = (fb-1)R,
p %072 o 1 - {(2Pbm2f) /(eme1) P Ik M 22

- (-1 %1 - V%V, ™

vhere giﬁ - (rl/z,---,rl/z) e

v
1/2CR 1/2

1 Since d is an R-l—PBB(m) design with
m £ 2, the matrix R

has at most two distinct positive
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eiganvalues the corresponding eigenvectors being orthogonal to 51'/ 2

wvhich corresponds to the eigenvalue 0 of R-"/zcn_l'/z. Hence it
ding to the

1/2
can have at

follows from (7) that ¢’ is an eig
-1/24 -1/2

eigenvalue 0 of D €D and also that D

mst two distinct positive eigenvaluss. Hence the result follows. 0

cor
-1/2&-1/2

REMARK. Obgerve that the diagonal elements of (fb-1)R are the
replication numbers in 4. Hence 3 is in fact a PEB(m) design with
e A, A !orahon

2 1 2
those for d. In Theorem 8, it is y to the ted-

m <2, From (7), it is easy to obtain °1' a

ness of d because examples may be given to demonstrate that the
cosplement (in the sense of (6)) of an R-l-m(n) design, m < 2, is
not necessarily connected.

Next we consider a method of Kronecker product and obtain the
following result.

THEOREM 9. Let N be the incidence matrix of an equireplicate C—design
and d_be a design with incidence matrix N @ lu Then (1) d’ is a
C-design and (ii) if, in addition, the design given by N is binary
and proper, then every truncation of dx is a D 1-PEB(m) design with

®w < 2, where D = IX.

PROOF. Let v be the b of tr s, r be the commwn replication
number and C be the C-matrix of the design given by N. Then the C-
matrix of dx is given by, say,

€, = rI_ e (I-u "'a‘m) +ulce T
By the definition of & C-design, the matrix C has at most cne positive
eigenvalue different from r, and hence it follows that the same holds
for the matrix Cp Furthermore, dx is also equireplicate with the
common replication number r. This proves (i). The proof of (ii)
follows along the line of the proof of Theorem 3. o

Although the above result is simple, it hax interesting appli-
cations. In particular, it may be employed to construct PBIB designs,
with more than two associate classes, which are n'l-m(z) designa.
For example, let N rep t a d singular or semi-regqular
G design, which is a C-design. Now, if dx ia formed aa in Theorem 9,
then 4 , or any truncation thereof, will be a 0" -rEB(2) design with

D=I. Note that in gemeral, d_and its truncations are PBIB designs
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with three associate classes. Thus wa get PBIB designs with more
than two associate classes which are D'l-m(z) designs with D = I,
Note that, as mentioned in Section 1, we restricted ourselves
tothecanen:ZinD-l
view. Some development on D_I-Pn(m) designs for more large value

~PEB(m) designs from a practical point of

of m may be made purely from a mathematical curiosity. However, this
is not taken into account here.
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