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SUMMARY
Designs for estimating the slope of a response surface are considered. Minimization of
the variance of the estimated slope maximized over all points in the factor space is taken
as the optimality criterion. Optimal designs under the minimax criterion are derived for
second- and third-order polynomial regression over spherical regions.

Some key words: Optimal design: Rotatable design; Second-order design: Slope of a rexponse surface; Third-
order design.

1. InTRODUCTION

In recent years it has been recognized that even in response surface designs often the
difference between estimated responses at two points may be of greater interest rather
than the response at individual locations. Herzberg (1967) and Box & Draper (1980)
derived forms of variance function for the difference when the design used ix rotatable.
Huda & Mukerjee (1984) obtained optimal second-order designs for spherical regions
under the criterion of minimizing the variance maximized over all pairs of points.

If differences at points close together in the factor space are involved. the estimation of
the local stope of the response surface becomes important. The pioneering work in this
area is by Atkinson (1970) and the problem has subsequently been taken up by many
other researchers (Ott & Mendenhall, 1972: Murthy & Studden. 1972: Myres & Lahoda.
1975: Hader & Park, 1978).

Clearly, the mean squared error of the estimated slope at a point depends on the point
and some of the above mentioned authors indicate the construction of optimal designs
that minimize the mean squared error, averaged over the factor space with respect to a
suitable weight measure. The present paper, on the other hand, considers a different
criterion, namely minimizing the variance of the estimated slope maximized over all
points in the factor space, and constructs optimal designs under this minimax criterion
for second- and third-order polynomial regressions over spherical regions.

2. MINIMAX SECOND-ORDER DESIONS

Suppose that k quantitative factors z,,...,z, take values in the k-ball
¥ = {z = (z,,....ns); L2} < R?} and that the expected value of the observation y(z) at

point z is

L3 &
E{y(z)} = f'(x) B = ﬂo+'§,l B:=.+}; 42:1 Byxiz;, H
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a second-degree polynomial. The observations are assumed to be uncorrelated and
homoscedastic, the common variance being, without loss of generality, taken to be unity.
A design §, which is a probability meazure on &, is of order two if it allows the cstima-
tion of all the parameters in (1). If ¥ experiments are performed according to §
then Ncov(f)= M"'(f). where f is the least squares estimator of f and
ME = _f/(z) ['(z)&(dx) in the information matrix of ¢.

It can be shown that for polynomial regression in spherical regiona, optimal designs
under the present type of criterion are symmetric (Kicfer. 1960). Hence, restricting to
symmetric designs, we observe that for a second-order design ¢ the conditions for
symmetry are

2 E(dr) = a, J.If {ldz) = ag, -I-l’f 2Fdr) =y (i)

2)
>0, a>a,; >0, ag+(k—1)ag; > kal,
and all other moments up to order four are zero.
If y(x) denotes the estimated response at x € &, the vector of estimated slopes along
the factor axes is given by

dyfdx = (8y/0x,, ..., 8y/éx,).
Then arranging the elements in f§ in the order
B=1(Bo.B. ... Bu BureoBu Brae o Bi-aa)
it can be shown that dj/dz = Hf. where
H =1[0.1,.2diag(x,.....x,). H*|.

Here the matrix H* may be computed easily but the details of H* are not required for
our purpose and it is enough to observe that H* is such that the diagonal clements of
H*H* are
X
=1,k
JsT=1

One can now obtain the covariance matrix of dy/dx and consider the variance of the
estimated slope averaged over all directions. Following Atkinson (1970), this is
equivalent to considering the trace of the covariance matrix and the minimax design will
be that which minimizes this trace maximized over all points in &'. Since

N cov (dy/dz) = cov (HE) = HM YO H',
if one computes M ~'(£) under (2) and observes the structure of H. it follows, after some
simplification, that the trace of this covariance matrix is

az ' k(4 —32) {1 = Diggy—ad)} +az7 (k— )] ok, 3)
where

13
o? =Izl £ D= {ag+ k=g —ka}} ™"
Note that (3) is a function only of p2 even though the design has been assumed to be only

symmetric and not necessarily rotatable.
If, without loss of generality, the radius R of the spherical design region is taken as



Degignas to estimate slope 175

unity, then noting that the coefficient of p2 in (3) is nonnegative, it follows that (3) is
maximum over the factor space when p? = 1 and thia maximum, after some rearrange-
ment of terms, can be expressed as

ay k+ayt(k—1)+4k™ Yag—ay,) Yk—1)+4£"1 D, (4)
where 0 <a; < k™', 0> a; > 0. ka3 < ay+(k—1)ay; <a,. For fixed a, and a3,
clearly (4) is decreasing in a, and is & minimum when a, = a; — (k— 1) a5, in which case
(4) becomes

oy kg (k= 1)+ 4k oy — kays) k= 1)+ 4lkay) TN (1 —kat) T (8)
with 0 < a; < k71,0 < &y, < ay(k+2)"". Simple differentiation shows that for fixed «,,
expression (5) is a minimum with respect to @;, when a,; = (k+2)~'«,, and if this is
subatituted in (5) the resulting expression, as a function of «,, is 8 minimum when
@y = {k+2(k+4)" 1)} = ay0, 88y,

Thus for the minimax design &, = a,, as stated above, and
a2 = (k+2) " g0, &g = 3(k+2)" " az0.
Since then &, = 3a;,, the minimax design is rotatable (Box & Hunter, 1957). In fact, like
the D-optimal designs, the optimal designs under the minimaxity criterion put the entire
mass at the centre and on the surface of the k-ball. Using the standard notation for
rotatable designs, one may write a; = A; and a, = 3a,, = 34,. The values of 4, leading
to the minimax designs and certain other interesting comparisons between our minimax
designs and the standard D-optimal designs are tabulated for 2 < & < 8 in §4.

3. MINIMAX THIRD-ORDER DESIGONS

Here the factor space 4 and the linear model are ag in the preceding section with the
only change that

k X ko
E{y(z)} = Bo +'_zl ﬂlzﬁ'lzl ‘ﬁ:l ﬁuzlzﬁ'.zl JZl lg’x Bin iz,

& third-degree polynomial.

In the third-order case symmetry alone does not ensure that the trace of the dispersion
matrix of dfj/dz will be a function of pZ; in fact, this can be readily verified by considering
the simplest situation with k = 2. In view of the findings in the second-order case, only
rotatable designs will be considered. This is also justified following Kiefer (1960) since it
can be shown analogously that the optimal design under our criterion will also be
rotatable. For a third-order design the conditions for rotatability are

jzzc(az)=az, jz:c(az)=sjzf:}:wz>=sz. ey

jzf&(ax) - 5J.=.‘xfc(dx) = 15]:?:}:5:(‘1:) =15k (i%j+u),

2,50, (k+2)2> k12, (k+4)2;4¢> (k+2)22,

and all other moments up to order six are zero.
Then if one makes use of the expressions for M(§) and M ~!({) for such designs as hy
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Gardiner, Grandage & Hader {1958) and Box & Draper (1980) and proceeds exactly as
for second-order designs, one obtains the trace of the covariance matrix of dj/dx as
a{d)+b(d) p2+c(R) p. where

a(d) = D k{k+4) 4,
b(A) = Dy{klk+3) Ag— (k— 1) (k+2) A3} —2D,(k+2) A,,
o(d) = 4D, A5 {k(k+5) A, A — (K + 3k—4) A3},

&
D, = {(k+4) 4, A —(k+2) A2} ™1, Dy = [Aftk+2)2,—kA3}7Y, pl= Y 27

Since (k+4) A, 4g > (k+2) AZ, it can be seen that ¢{d) > 0; but 5(1) may be positive or
negative. Hence. if we assume as before that R = 1 without loss of generality, it iy
evident that the quantity a(d) +b{d) p2 +c(1) p? is maximum at either p, = 1 oratp, =0
according as b(4) +¢(A) is positive or not. As such, our objective function, namely the
trace of the covariance matrix of djj/dx maximized over the lactor space. becomes, say,

$(d) = a(2)+max {b(d) +¢{1),0}, (6)

which we have to minimize by suitably choosing 2,.4,, 4.

If R = 1, then A, < {k+2)~' 1, and if we apply this condition. partial differentiation
with respect to A, shows a(2)+b{2) +¢{4) to be decreasing in A for fixed 1; and i,. The
same holds trivially for a(2). Therefore, (1) is decreasing in A4 for fixed 4, and A,. and in
order to minimize ¢(4) one should take A4 at its maximum possible value for given 4, and
As

Now if u be a probability measure over [0,1], then subject to the constraints
J2'u(dz) = k; (i = 1.2), the maximum of [z° u(dz) is attained if 4 has a support over
exactly two points namely (1—h,)”'(k;—k;) = z,. say. and 1. This can be proved
(Karlin & Studden, 1966, Ch. 2) by observing that the function

Uz) = A +z+2) {(1=k) ' +2)+(1—hy) " R) 7L,
where
b= —(hy—hy) 2=y —hy) {(1—hy) (1 +h) ~2hy)} 71,
is & minimum for 0 € z < 1 at z;, and hence the inequality
(V+z+27)(1~2) 2 Uzo) {(1 —h3) " (1 —22) + (1 —h,) "L A(1 —2)}

bolds for 0 < z < 1, providing an upper bound for z° in this range which is attainable if
and only if 2=z 0r 1.

In view of the above, for given A, A4, in order to maximize 14, the design measure ¢
should put all the mass at the surface of the ball and an inner spherical shell:
incidentally, the same phenomenon happens with the D-optimal designs (Galil & Kiefer.
1979). Denoting by p the radius of the inner shell, and w the mass distributed uniformly
over it, one geta

=k N l—w+wp?), A= {kik+2)} (1 -w+wp?), -
A = {klk+2) (k+4)} " (1 —w+wp®),
and, accordingly, the objective function {8) becomes, say,

$1(w, p) = ay(w, p) + max {b, (w, p) +¢,(w, p), 0},
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where. for0 < w.p < 1,
a,(w.p) = B(l —w+uwp®) k2,
by(w. p) = (1 —w+wp*) " k= 1) (k+2)2 = 4{w(l —w) (1 —p*)?} !
—2B(\ —w+uwp*) k(k+2).
ey, p) = 1 —w+wp®) " (k2 +3k—4) k(k+4) + B() —w+ wp?) k(k +8).
B = {w(l—w)p?(1—pH2}~ L.

The form of the function ¢, is too cumbersome to allow analytical solution. Following
Galil & Kiefer (1979). we therefore proceed numerically. We start with the function
a,(w.p)+b,(w.p)+c (2. p) and obtain numerically the combination of w and p that
minimizes this over O<w.p<1. If for this combination of w and p.
by(w. p)+¢y(ew. p) > 0. then clearly thiz gives the optimal solution in termx of mini-
mization of @, (. p). This procedure operates successfully for 2 € £ < 8 and the optimal
combinations of w and p are given in §4. Then it is routine to compute ;. 4. 2 from (7).
Results for k > 9 have not been derived since the available rotatable exact designs for
such cases require too many trials to be of practical use. However, it is felt from our
computational experience that the method will be successful even for & = 9 and 10 and
possibly for still higher values of &.

4. COMPUTATIONAL RESULTS

The optimal choices of design parameters for second- and third-order designx are given
in Table 1, which shows also some comparisons between our designs and the D-optimal

Table 1. Values of optimal design paramelers for minimax design: D-efficiency E,
of minimax design: efficiency e, of D-optimal design

k=2 k=3 k=4 k=5 k=6 k=3

Second-order design A 0355 0266 0202 0176 G151 ole
E 0980 0963 0067 0971 0974 0070

L3 0800 0898 0899 0002 (0908 0014

Third-order design P G504 0520 0545 0574
w ud85  0-381 o310 018l

E, 0951 0935  0D30 0038

e 0399 0851 0823 0780 088

ones. The D-efficiencies of the minimax designs appear to be fairly satisfactory. The D-
efficiency of a design is defined in the usual way by taking pth root of the ratio of
determinants. where p is the number of parameters. To judge the D-optimal designs
under the minimaxity criterion, we take as a measure of efficiency the ratios of the
maximum trace of the dispersion matrix of the estimated slope vector for the D-optimal
designs to that of the minimax designs. The D-optimal designs perform well but not so
well as our optimal designs do under the criterion of D-optimality. In making these
comparisons, the findings of Galil & Kiefer (1970) have been used.

The efficiency of some exact designs under the minimax criterion has been in-
vestigated. For example in the second-order case with & = 3 the cube + cross — polytope’
design with some ventre points has a maximum efficiency of approximately 0-05 attained
when only three centre points are added.
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