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0. Introduction. The behaviour of sibgularily under con

has always been an interesting question. In particular, it may be asked
whether the convolution of singular is ily singular. How-
ever, Salem {[5)) has constructed ples of singul whose iter-
ates are absolutely continuous. In this paper we examine this question in
another direction. The main theorem of this paper asserts that the Haar
measure on any infinite compact abelian group can always be written
88 the convolution of two singular mensures, It is also proved that in
any non-discrete locally compact abelian group there are singular meas-
ures whose convolution is absolutely continuous.

1. Background. Throughout this paper, with the exception of the
last section, we shall be dealing with comapact abelian groups. For any
locally compact abelian group @, we use the symbol 15 to denote the
Haar mensure of @. If G is compact, ) is always normalized to have
olG) =1.

1t 6 in any compact abelian group, let B, and B denote the o-tield
of Baire and Borel subsets respectively. If G is metric B, =9 and in
sny case B, is the smallest o-field with respect to which all continuous
functions are measurable. The term measure will be used to denote prob-
ability measures on B,. Since every measure on B, has a regular unique
extension to B, we may regard the mensure ag defined on B itself and
assume fts regularity whenever it ia necessary. We will have occasion
to use the Rieaz theorem. This aagerts that if L is any non-negative linear
functional on (@) (the space of continuous functions on @) with L(1) =1,
then there exists a unique maesure p such that I{z) =ar zdp for all 2. 0(6).

A measure p on & compact group G is oalled singular it p{[e)) =0
for all z « & and if there exists a set A such that p{A) = 1 and 25(4) = 0.
Singularity is o special case of orthogonality, Measures p and ¢ on @ are
said to be orthogonal if there exists & set A with p(4) = ¢(G—A)=0;
in this case we write p L ¢. With this notation, p is singular it and only
P((2]) = 0 for all z ¢ G and if p Lig. A measure p is said to be absolulely
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continkous, p<Clg, in symbols, if p(A) =0 for every set A for which
Ay =0,

If p and g are two measures on @, their convolution, denoted by peg,
is the measure whoge value for every set A « B, is given by

(pe9)(d) = [ pd-2)dglo).
If the group G is abelian, it follows that peg = yep, If H and H' are
two pact groups, 0 & h phism {*) of H into H’ and p » measure
on H, the measure pd~ ou H' is defined by setting pd~"(4) = p[67"(4")]
for every Baire set A’'C H'. It 6 ia onto B’ then Az6™" = Ag.. I p and ¢
are any two measures on H, (peg)d™ = P eg8™",

2. Preliminary ! Our hod depends upon first facto-
rizing Haar into singul on certain simple groups
and then passing on to more complicated groups. To this end, meveral
technical devices are utilized. We summarize, in this section, those that
are essential for our purposes.

Lesmma 2.1 (Weil). Zet G be a compact groxp, T a subgroup and
H = G;T. Then, for cvery measure p on H, there exists o unigus measure p
on G, satisfying the relation

[ 185 =] ap [ fta+ ity
(] -4 T

Jor every continuous funciion | on G.

Before proceeding to prove this proposition we make a fow remarks
on its ing. If f is contd on G, [{(z+1)dirl#) is & continuous

r

function on @G (the variable being z) and moreover this function is eomtant
on the cosets of T. It can therefore be regarded as a '
on H and can be integrated with respect to p.

Indeed, for any /¢ 0(G) we define L{f) qup[l(.H)dh(l). Lis
& non-negative linear functional on O(@) with L(1) =J and hence there
exists & unique mmmﬁmehthnL([)=dei tor all f¢0(@).

Lemua 2.2. Let the set up bo as in the proceding lomma and lat 0 be
the oamowical Aomomorphism G—H. Them, the correspondemce p—p hae
the properties:

W p=p"

{#) 2o = i;

(H) (og) = ods

(iv) if p io singular on H, p is singulor on G;

(¥) if p do absolutely continnons on H, p is absolutoly continnoxs on 6.

® By b Aiem we ahways und 1 N phi
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The proofs are straightforward and are omittod.

Before proceeding to the next lemma, we introduce a few definiti
Let @ be a compact group and 8, o d di of subgr
We denote by H, the quotient group G/Ss and by T the canomeal homo-
morphism G—+G/8x. It is clear that Hy = Hyuy,f(8a/Sess) and hence H, is
s quotient group of Hyy:. We denote by 6 the canonical homomorphism
Hap>Hay. A sequence {pa) of , with p, defined on Hs, is called
consistent if pa=payfa’ for all n. A consistent sequence {py} is said to
axmdwammurepwauthereeximammum » on G such that
pn = pra’ for all n. Finally, & sequence of subgroups 8, is called small
if 8. is decending and [} 8 = {¢e}.

»

Lexua 2.3. Let G be o compact group, Su o amall sequence of sub-
groups and {ps} & consistont sequonce of measures. Then, py exiends to a
uniquely defined measure p on G.

Let A denote the set of all continuous functions which are constant
on the cosets of at least one 85. A is a subalgebra of C(@). Since M) 8x = {6},

»

it follows easily that A separates points of @. Hence, by the Stone-Weier-
straes theorem A is denee in C(@).

Let L, denote the linear functional f -dps on C(H.). If f< 4, then f
can be regarded as a i function on some H,. More precisely,
for each f ¢ A, there exists an integer » and & g ¢ C(H,) such that f = gob,.
Define L{f) = Ls(g). The consistency of ps implies that L is well defined
on A, It is further non-negative and hence bounded on A. It can there-
fore be extended (since A is dense in C(G)) a8 & unique bounded linear
functional on C(@). Further this extension is obviously non-negative
and hence there exists & unique measure p on @ such that L(f)=[dp
for all f ¢ C(@). It ia clear that p is the unique measure to which the py
extend.

LEMMA 2.4, With notalions as in lemma 2.3, p is the Haar measure
on G if and only if ps i¢ the Haar measure on Hy for ecach ».

The only if part is trivial. As to the if part, note that A is an invariant
collection of tunctions and that L on A is sn invariant linear functional
it Ly on C(H,) is invariant for each #. It is then clear that the (nnique)
extension of L to C(@) is also invariant and hence the corresponding
measure is the Haar measure on G,

Lemua 2.5, With notations as in lemma 2.3, supposs thai

1) Sg)p-([ﬂ])—-o a8 n—>o0

(2) there exists a sequence Oy of sets, O, C Hy, stich that pa(Ca) =1
for oll n whils Ag,{Cy)-»0.
Then, p is singular.

Tundamenta Mathematicae, T. XLIX. 9
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By definition of p, pa = prs’ for all n and hence for any z¢6,
p([a)) € palwale)] < mgp.([y])-’o 88 #-+c0, 80 that p([2)) = 0. Further if
Uy=5Y(0y), and O = QU., 2(0) =1 pince p(Ch) =1 for all n, while

20{0) = 0 since 10(0)<lq(0'.) = ig,(0a) >0, This proves that p is sin-
gular.

8. Special groups. We shall now prove that Haar measure can

be written a8 the convolution of two singul for some speoial
groups G. We use the symbol K ambiguously to denote either the multipli-
ecative group of pl of modules unity or the additive group

of reals ¢ with 0 <1 <1 with addition carried out modulo 1.

TaEOREM 3.1, There exist singular measures p ond v 01" K such that
poy=lg.

Lot H be the additive group of integers 0,1,2 and 3, with group
addition carried out modulo 4. Let H, be the infinite direct produnet of H
with itself. Under the product topology, H, is & compact group and Ag,
is the infinite direct product of Ay on H. Let ug and vy be measures on H
which assign maases § each to the points 0, 1 and 0, 2. It is easily verified
that dg = pmevn. Let upm, and vy, be the infinite direct products of pum
and ry respectively. It ia clear that Ay, = um,eva, 8nd that Ag,, un, and g,
all vanish for single point sets. Let 0 = (0,1} and D = {0,3}. If we
define 0y =J] G and D, =[] D, then pg(C,) = vg,(Dy) =1 and Ag(Cy)=
1g,{Dy) = [11=0. This shows that gz, is orthogonal to both sz, and vz,

Consider now the map 6 of H, into [0, 1] which sends the vector
(Miy Dy, ...) of H, into Yhy-4~" Even though this is not & homomorphism
of H, into K, it is clear that for z ¢ 0, and y ¢ D,, 8(z+y) = 8(z)  0(y)
where @ denotes addition in K. If therefore = pg " snd »= rgf~"
then gov = Ag0~". Now it can be proved by elementary argaments that
g8~} is Lebesgue measure on [0, 1] and hence it follows that uev = iz.

Since 0 is one-one except at a countable set of points of H, (over
which Ag,, pg, and ry, oll vanish), it follows that x and » are both ortho-
gonsl to Ax and vanish for all single point sets. In other words it follows
that u and » are singular, This proves the theorem.

The above construction gives at the same time singular measures
on the additive group of reals whose convolution is absolutel

TEEOREM 3.2. TRers are singular measures u and » on the real line R
whose oonvoludion s absolutely ocontinuous,

With the same notation aa in the proof of the preceding theorem,
we observe that 4 = ug,6~ is concentrated in A = ([0, §] and » = yg 8~
is concentrated in B = [0, §]. But then for #¢ 4 and y ¢ B, 2+y = aBy
‘where -+ denotes ordinary addition and @ denotes addition in K. This
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shows that pev is Lebesgue measure in [0, 1], « denoting convolution
of measures on the additive group R. This proves the theorem.

The circlo group is the simp of P d groups. At
the other extreme we shall now examine certain compact totally discon-
nected groups. It is well known that a compact group G is totally discon-
nected if and only if ite character group is a torsion group {[4]). In & certain
sense, the simplest infinite torsion group is the group Z(p~) of all numbers
mfp", p being a prime, the group operation being addition carried out
modulo 1. In the rest of the section, X denotes the discrete group Z(p*)
and @ the (compact) character group of X, For any integer n, Xs will
denote the subgroup of X isting of all bers of the form mfpn.
X;CX,C... and these are all the subgroups of X. Another description
of X, iz obtained by regarding it as the additive group of integera
0,1,2,..,p"—1, addition carried out modulo p*.

The Pontrjagin duality theory enables us to view @ and X in a per-
fectly symmetric manner. To this end we introduce the function (.,.)
such that for fixed z ¢ X, (., z) is the character on @ represented by z and
for fixed ge @, (g,.) is the character on X represented by g. We define
Ty ag the annihilator of Xu, i.e. Tu={g: (g,2) =1 for all 2 ¢ X,}. Ty is
a subgroup of & and Tyy,C Tu. Since Xa+ X, (N Ta = {¢} s0 that T, is

n

s small sequence. Further, from duality theory it follows that G/Ts and X,
are character groups of each other. X, being & finite group, its character
group is isomorphic to itself and hence /Ty is isomorphic to X,.

THEOREM 3.3. There are singular measures p and q on G swch that
lg=7peg.

We write 8y = Ts 8nd Hs = G/8,. We denote by 1, and 0, respec-
tively the canonical homorphisms G—+G/8, and Hyy,—Ha. Our method
of proof consists in building up snitable i q of
on the Hs. Hy is isomorphic to Xp a8 we uoted above.

"-1
We first observe that every element of H, con be written as ‘2 '
=

with 0 <r < p—1 for all i. This representation moreover is unique. Lot
O be the set of all pointa in whoso representation r, =r,=...=ru_, =0
and let D, be the set of points in whose representation ry =1 = .. =
r»_2=0. Oy and D, each contain exactly p*™' points, Ca~ Dy =[0], and
Cn+Dy = Hy. Let pa be the measure with masses 1/p™ at the points
of Oy (with zero masses at others) and g the measure defined likewise
over D,. It is easy to verify that paegqe = Ju,.

We shall now verify that p. and g« are consistent sequences. Choose
and fix the integer # and consider the groups H,,, and H,. From the
special nature of the groups, it follows easily that the kernel of the homo-
morphism 6y: Hy4,—+Hy consists of the p™ points 0, p**, 2p™,..., (p*" —1)p"

'y
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W)

If z¢H,; bas the mprewnmtion {E rp', it is then obvious that 8(x)

bas the representation (in H,) 2 rp*. Consequently Gy, is mapped into Cs

80d Dy, mapped into Dy. It is then not difficult to verify that py=p, 05"
and go = q.+.0:'-

The i y of the seq Px 8nd ¢n implies that they extend
to measures p and ¢ on G. Since Ay, extends to 1o and since paegy = Ay,
for all », it follows that peg = Jp. Since

1
sup pa([z]) = sup gul[]) = P -0
zeH, 2¢H,
and since, by lemma 2.4,
1
I ) = Ju( Do) = 550,

lemma 2.5 implies that p and g are singular. This completes the proof
of the theorem.

4. The main theorem. In this section we ghall prove the main
theorem of this paper. Before proceeding to its actual prool, it is con-
venient to obtain a few preliminary propositions which clarify the relation
between the general compact abelian group and the special groups consid-
ered in the preceding section.

For the group-theoretic terms employed in the following lemmas,
such as divisible group, reduced group eto., we refer to [2]. Two sub-
groups of & group are said to be independent when identity is their only
eommon element.

Lexma 4.1. If X is an infinile lorsion group which i8 reduced, then
we can find two infinite sub-groups of X which are independend.

X ig a direct sum of primary groups. If the number of terms is infinite,
the agaertion is obvious. Otherwise one term at least is infinite. Since X
is reduced, so are itg sub-groups and hence we may (and do) suppose
that X is & primary group which is reduced. We can then assert the
existonce of a cyclic group €, which is a direct summand of X ([2]). We may
thus write X = 0, @D, where D, is infinite, primary and reduced. The
argument applies to D, also and hence we can write D, = C,@.D, where D,
is infinite, primary and reduced. Since X is infinite, this procedure can
g0 on ad infinitam. Xet X, be the sub-group generated by €, Cy, ...,
Cuy, ... and X, the sub-group generated by Cy, C,, ..., Cax, ... Then X,
and X, are independent infinite sub-groups of X.

Lexwma 4.2. dn infinite torsion group X can be represented as Z(p™)
@F, with ¥ a finite group, if and only if it does not have two independent
infinile sub-groups.
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If X = Z(p®)@F, it is clear that every infinite sub-group of X must
contain Z({p>) and hence X does not possess two infinite, independent
sub-groups. Conversely let X" be a torsion group not possessing two infinite
independent sub-groups. Siuce X is infinite, X ecannot be reduced
(Lemma 4.1). Let D be the maximal divisible sub-group of X. We can
then write X a8 D@®F where F is reduced. Lemma 4.1 once again applies
to prove that P i finite. Now D is » divisible torsion group and is hence
a direct sum of Z(p*)'s ([2]). The non-existence of infinite independent
sub-groups of X then implies that D must be Z(p~) for some prime p.
This proves the lemmsa.

LEMMA 4.3. An infinite compact abelian group G necessarily salisfies
one of the follnoing relations:

(1) It kas a non-trivial component of the identity or equivalently there
exists a sub-group T such that GIT is the circle group K.

(2) It i3 totally disconnected and has o sub-group T such that G/T can
be written as H QH, where H, and H, are infinite compact groups.

(3) It is representabls as G,@F where F s finite and G, is the char-
ader group of Z(p>).

Let X be the character group of @ and let T be a sub-group of @
and X, the annihilator of 7 in X, Then @/7 and X, are character group
of each other. Consequently @/T is isomorphic to K if and only if X, is
isomorphie to the integer group, i. e. if and only if X, is the cyclic group
generated by an element z, of infinite order. Now it is well known that X
contains elements of infinite order it and only if & has a non-trivial com-
ponent of the identity. This shows that group with non-trivial components
of identity are precisely those which admit K as a factor group.

If @ is totally disconnected, X iz a torsion group. Then lemmas 4.1
and 4.2 imply that either X has two infinite independent sub-groups
or X is of the form Z(p>) ®F where P is finite. If X has infinite sub-groups
X, and X, which are independent, X’ is the group X,@®X, and T the
annihilator of X’ in @, it follows that @/T has X, @X, for its character
group and hence decomposes as H, ®H, where H, and H, are respectively
the infinite compact groups which are character groups of X, and X,.

Finally, if X is of the form Z(p*) ®F, G evidently satisties relation (3).
This proves the lemims.

THEOREM 4.1, If G is any infinite compact abelian group, thers are
singulor measured p and q such that g = pegq.

Suppose that & haa a sub-group T such that @/T is isomorphic to K.
By theorem 3.1 there are singular measures s and » on K such that
Ag = pev. Construct now measures Z and # on @ vis the method described
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in lemmas 2.1 and 2.3. If p=/ji and ¢=+, then it follows from these
lemmas the p and ¢ are singular and peq = Ag.

Suppose now that G has a sub-gronp T such that G/T can be written
a8 H,@H, where H, and H, are infinite compact groups, Let 2, and 2,
be respectively the Haar on H, and H, considered as measures
on H,@®H,=H. 8ince H, and H, are infinite, Ag(H,) = 24(H,) = 0 so
that 4, and , are singular. It can further be proved easily that ig =402,
If wo now define p = A, and ¢ = 4, (vide lemmss 2 1 and 2 2), it is clear
that p and ¢ are singular and lo = peg.

There remains, in view of lemma 4.3 only the case when G can be
written as G,®F whero F is finite and @, the character group of Z(p).
By virtoe of the construction envieaged in lerama 2.2 and 2.2 it suffices
{theorem 3.3) the theorem for ;. This however has alresdy been done
to prove 8o that the proof of the theorem is complete.

8. Locally compact groups. We shall, in thiz scction, make
a few remarks concerning locally compact abelian groupe. We prove
a simple preliminary proposition,

LeuMa 5.1, La @ be a locally compact abelian group and H an open
Baire sub-group. If there are measures p and ¢ on H such that (i) p and ¢
are singular on H, (ii) peq s absolutely continuous on H, then the same
property holds for & also,

Indeed, define p’ and ¢’ on @ by putting p and ¢ to be zero outside H.
Binoe p’e ¢’ < Ay and since Ay €1y, it is obvious that p'e g’ < lo.

THEOREM 5.1, If @ is any non-diserets locally compact abelian group,
there exist singular measures p and ¢ on G such that peg<i .

It is o well-known theorem of Pontrjagin that @ has an open Baire
sub-group (*) H which can be written in the form C@®V where C ia compact
and ¥ a vector group. In view of lemma 5.1 it suffices to assume that &
itself can be written as CEHV and this we shall do.

If C is finite, then @ being non-diserete, the vector component must
be present and hence V is an open vector sub-group of C, say of dimension m.
In view of lemma 5.1 again it suffices to construct measures on V. Now ¥V
oan be written as @R; where the direct sum is m-fold and R; is the real
line for each {. By theorem 3.3, there are singular messures p; and ¢
on R; such that pseg; is sbsolutely continuous on R;. If p and g are the
direct products of p; and g respectively, it is obvious that p and ¢ are
singular and peg is absolutely continuous.

It O is infinite theorem 4.1 disposes of the case when V iz absent.
On the other hand, if V is present, the above construction together with

*) For iostance the mub-group gecerated by a compact neighbourhood of the
fdentity is one such.
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theorem 4.1 yields singular measures on both ¢ and ¥ whose convolutions
are absolutely continuous. By taking direct products we then have singular
measures p and ¢ on G = O@V such that psg < A9, This completes the
proof of the theorem,
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