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1. Let .Y be a locally compact Bausdorff space and L(X) the space
of i f jons on X with pact supports. A famous theorem
of functional analysis asserts that the only non-negative linear function-
als on L({X) are of the form [gdu where 4 is a regular Borel measure
on X. This theorem was first proved when .X = [0, 1] by F. Riesz and the
general case was treated by Kakutani, who used the theory of contents [6]
(also [3], p.216-247), Pettis [10] obtained the same general form by
deducing it from an extension theorem for measures. In all these cases
the btained has as domain the o-ring of Borel subsets of X.
Edwards [4] extended this domain to the minimal o-field ining
all open subsets of X and proved that regularity still persists for a wide
subfamily.

In this paper we discuss the above theorem (to which we shall refer
a8 the Riesz theorem in conformity with the accopted usage) from an-
other point of view. Our aim is (i) to obtain the Riesz theorem by
methods structurally more direct than the classical ones and (ii) to in-
vestigate the part played by the assumptions of local compactness
and Hausdorffness in the validity of the theorem.

As far as (i) is concerned, our method of proof can be explained
as follows, In order to integrate a function f, it is enough to know the
values of the integrating measure u on the sets of the form f~*(B) where
B is an arbitrary Borel set on the reals not containing the origin. Con-
sequently if x is defined on the minimal o-ring containing all such sets
{7(B) (with { ¢ L{.T) and B arbitrary), u can be nsed to integrate every
f«L(X). 8% is the g-ring of Baire sets of X. Thus the natural form of
the representation theorem should involve only a measure over Sy.
If we are given a measure over Sy, the problem of extending it regu-
larly to the ¢-ring of Borel subsets of X is an entirely different question
and can indeed be solved under general conditions [9). Another agreeable
feature of Sy is that any measure on 8x which is finite for compact sets
in 8x is regular, Thus, the natural method of proving the Riesz theorem
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at least in the pect case is to rep )t 1f space
in such & way as to simplify its Baire sets structurally. We represent
any compact Hausdorff apace as a continuous image of a closed subzet
of a product of two point apaces ([7], p. 168). We identify the Baire sets
of this product space (proposition 2.3) and obtain the required Baire
measure by first forming it for finite dimensional suhsets and then ex-
tending it by the well-known i ¥ theorem of Kolmogorov ({3, p. 29).
The locally compact case is then deduced from the compact case.

(ii) is discussed in § 4, where it is shown that the Riesz theorem
is valid in general topological spaces without either of the assumptions
of local compactness and Hausdorffness. This in itself may oot be much,
but it does point out that the classical restrictions are only to ensure
that L(X) is wide enough to make the theorem interesting. An interesting
question about ideals of the space of continuous functions on a compact
space is raised.

Throughout this paper, unless explicitly stated otherwise, X is a to-
pological space, C(X) is the space of all bounded continuous functions
on X and L(X) is the space of all continuous functions on X' vanishing
outside pact sets (funeti with pact supports). L(X}C C(Y}),
= C(X) if and oaly if X is compact. All functions considered in thix
paper are real-valued, C(X) and L(X) are vector lattices over the reals
with the lattice operations max(f,g) and min(f,g). For /,¢ in C(X)
we write / < ¢ to mean f{z) < g(z) for all re X. 0, when no confusion
arises, denotes the function identically zero.

It E is o vector lattice, any linear map of E into the reals is called
& linear functional. A linear functional on E is called bounded if it maps
bounded subsets of E into bounded sets of reals. (A subset A of E ix
called bounded if there are elements a, ¢ E such that a <z < g for
all z ¢ A.) A linear functional A on B is called non-negative if d{e) >0
whenever a > 0. A non-negative linear functional is bounded. If .1 is
b bounded linear functional, there are non-negative linear functionals
A*, A~ such that (8) A = A+*—A-, (b)if 4 = A,—4, for non-negative
linear functionals A4,, 4,, then A,—A*+ and A,—A~ are non-negative.
Forz2>0

A*z) =°B<l:lzll1(y). AY(z) = _«in.faA(y)'

These facts are well known and also easy to prove ([2), p. 245).
For any topological space X, C(X) is a Banach space with
/1 =sup {f{)]. When E = C(X) is considered as a vector lattice, a linear
nX
tanctional on E is bounded if and only if it is bounded in the usual sense
as a linear fanctional over the B h space C(X) and therefore con-
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tinuous in the topology of uniform convergence. In this paper, all the
linear functionals considered will be on C{X) or on its subsets which
are also vector lattices. If M C C(X) is a linear manifold of C(X) which
is closed under the lattice operations, and A a bounded linear functional
on M, A is called o-smooth if the relations [, ¢ M, fulx) 0 for cach re X
(in symbels: f, | 0) imply A(fs)—+0.

PROPOSITION 1.1. Let X be any topological space. Then any bounded
linear functional on L(X) is o-smooth.

Proof. It is enough to prove the proposition for non-negative linear
functionals, Let {f,} ¢L(X) and f,!0. By Dini’s theorem, f,{0 uni-
formly. Thus if &, = sup falit)y £ 0. Since /I ¢ L(X) and sines f, < eFf1*,

o

we have A(f,) < e*A(fi*) =0 as n-»o0. This proves the result.

When X Is a locally pact Hausdorff space, Sy denotes the o-ring
generated by the compact Gy-s of .X. Sets of 8y are called the Baire sels
of X. 8x i3 the smallest o-ring with respect to which all functions of
L(X) are measurable. If X is a compact Hausdorff space, X ¢ Sx and Sy
becomes & g-field. A Baire measure is a measure x on Sy which is finite
for the compact G,-5. Any Baire measure x is regular, i. e, u#{4) = sup {u(K):
KCA, K8y and K compaet} = inf{u(U): UD A, U «8x and U open}.
These facts are to be found in Halmos' hook on measure theory [5],
p. 217-247. Hereafter, this book will be referred to as H. Regarding
Baire , we i diately have a uniq propositi

PROPOSITION 1.2. If m, m’ are two Baire measures such that fgdm
=[gdm’ for all g ¢ L(X) where X is a locally compact Hausdorff space,
then m=m'.

Proof. It is enough to show that = = m’ on the compact G,-8 of X.
For, if this is shown, then the compact G,-s forming & lattice (H, p. 25,
ox, 2) and the two measures being finite and equal on this lattice, it will
follow that they will be equal on the ¢-ring generated by the lattice,
i.e. on 8x (H, p. 188, ex. 3a). This will then show that m = m’.

Now if X is any compact G,, there exists a sequence {f,} in L+{.X)
sach that f, } zx. Then we have

m(E) = [ zxdm = lim [ fudm = lim [ fadw’ = [ zedm’ = m(K).

Since K Is arbitrary, the result follows.

We conclude this section with two propositions which are needed
further on.

PROPOSITION 1.3. Let X be a locally compact Havedorff space and K
a compact subsel. Suppose that § ia & funotion defined on K, non-negalive and
oontinsious. Thon there evists an f* « L(X) suoh that f* 2 0 and f*=fon K.
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If g»0 is any continuous fundion of X such thal g>f on K, f* can
be ohosen o satisfy the inequalily 0 <[ <g.

Proof. Let V be an open set with compact closure contsining X
and let X° be the one-point compactilication of X. Then K and X°-¥
are disjoint closed subsets of X*. The function /, defined on K u(X*-V),
which is f on K and 0 on X°-V, is » 0 and continuous; since X* is
normal it can be extended to a non-negative continuous function [}
on X® If f* is its restriction to X, f*> 0, = f on K. Since f*(z) =0 for
z¢X=V, f*cL(X). This proves the first part.

For the second part it ia enough to note that min(/*, 4) is o function
of L(X) having the required properties.

Propostrion 1.4. La X be a locally compact Hausdorff rpace and K
a compact subsel. The Baire sels of the compact Hausdor{ space K are
precisely (he intersections of the Baire sets of X with K.

Proof. In view of a standard result (H, p. 25) it is enough to prove
that compact G,-8 of X are precisely the intersections with i of the com-
pact @,-8 of .X. Obviously if X, is a compact G, of X, K,~ K is a com-
pact @, of K. Suppose now that K, C K is a compact G, of K. There is
then a function f > 0, defined and continuous on the set X, such that
K, = {z: f{z)=1). Let f*> 0 and ¢« L(X) be some extension of /. Then
K,= K} ~ K where K} = {r: {(z) = 1). 8ince obviously K} is a compact
@, of X, the result follows.

Remarks. 1. If K is itself a compact @, of X, it follows eanily that
the Baire seta of the compact Hausdorff space K are precisely those
subsets of K which are Baire gets of X. In aymbols, Sg = (d: ACK,
A «8x).

2. In this case, Sx has & crucial “ideal” property: the relations
A¢8x, Be8x, BCA imply that B 8.

2, In this section, we discuss the Riesz theorem when X is a com-
pact Hausdortf space. For convenience, we say that a topological rpace
has property R if it is & compact Hausdorf! space and every non-negative
linear functional on C(X) has an integral representation with an inte-
grating Baire measure. It follows that if .Y has property R, any bounded
linear functional on C(X) has on integral representation with an inte-
grating signed Baire measure, I ¢ is & signed Baire measure and A{g)
=xfpdq for g« C(X), A is a non-negative linear functionsl on C(X)

if and only if p in 8 measure. This can easily be shown by using the reg-
ulgrity of ¢, ¢* and ¢~

Prorostrion 2.1, If X Ras property R and the Hausdorff ppace ¥
12 a confinuows image of X, then Y has property R.
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Proof. Y is certainly n compact Hausdorff space. Let { be a con-
tinuous map of X' onto Y, For any compact @, K of Y, t™'(K) is a com-
pact @, of X and hence H8y) C 8x.

For any function  on Y, /({] is a function on X and if & is a function
on .X expresied as A°[f], where A* is a function on ¥, A* is uniquely de-
termined by h (since ¢ maps X onto Y). A ¢ C(X) il and only if A* ¢ C(Y).
Define L = {(h: h« C(X), = A*[t] lor A* e C(Y)}). L i3 a linear manifold
C(X). For n given non-negative linear functional .l on ('(Y) we et A‘(hi
= A(A*) for all kL, A*is a non-negative linear functional on L and js
even bounded {in the Banach space sense) since L contains conxtants.

By the Hahn-Banach theorem ([1], p. 27), the bounded linear
functional A°® on L can be extended as a bounded linear functional
to C(X). Since X has property R, there is an integral representation
for this extension. ‘We thus obtain a signed Baire measure ¢ such that
:A*h) = f hdgp for all A L.

Bince 17'(Sy) C 8x, ¢ induces  signed measure ¢, on Sp with the
property that g(d)=g{t"(4)} for sll A ¢Sp. It then follows that
() = A%h) = [ hdp = [ h*dp, for all A* ¢ C(Y). This shows that .1
has an integral representation. Since A is non-negative, g is actuslly
a measure, THis completes the proof that ¥ has property R.

ProrosiTioN 2.2. If X has property R and Y ie a closed subspace
of X, then Y has property R.

Proof. Y is evidently compact Hausdorff space. Let .1 be a non-
negative linear functional on C(Y). For any [« C(X), its restriction fy
to Y is in C(Y). Define A, by setting A,(f) = A(fy) for [« C(X). A, is
a non-negative linear functional on C(.X). Since X has property R, there
is & Baire measure m such that A(f) = [ fdm for all feC(X).

Firatly m (X —¥)=10. For if m,(X —¥)> 0, there is a Baire subset 4
of XY such that m({4) > 0. Since m is regular, we car get a compact
Baire set £ C A such m(K) > 0. Let / be a continuous function on X
such that 0</<1, /=0 on Y and 1 on K. Then, [fdm zifldm

=m(K)>0 while A,f}= A(fr)=0. This contradiction shows that
m(X~-Y)=0.

8o Y is a thick subset of the measure space (X, Sy, m) (H, p. 75).
We can therefore obtain a measure m, on the class of intersections of Sx
with ¥, which is precisely 8y. We now show that for any e C(X),
f1dm = [ {ydm,. Since for A €8x, AnY ¢Sy and m(d)= m{d~Y),
the relation [ gdm = [ gydm, is valid for all g =y, with 4 ¢ 8x. It is
thus valid for all Sx-measurable step functions, and hence for all bounded
Sx-measurable functions by approximation. It is thus valid for all
g« C(X).
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We thus have f/,-dm,:f/dm = 4{f) = Alfy) for all [r. Since
X is n compact Hausdorff space, it is normal and hence any A ¢ C(Y)
is fy for some [« C{X). This shows that A(h) = _f hdmg and completes
the proof that Y has property R.

In the next propokition we discues the atructure of Baire sets of
some apecial types of compact Hausdorf{ spaces.

lemsmox 23. Let X, (uel) be compact Hauadorff spaces and
8,=8x,. Lot X = ”.l and 8 be the produet o-field generated by the 8,.

Then X i3 a mmpad Hauadorff space and 8 = 8.

Proof, X is evidently a Hausdorff space. It i compact by a famous
theorem of Tychonoff. 8ince § is the smallest o-field generated by finite
dimensional cylinder subsets of X' with compact G,-k as bases, §C 8y,
We complete the proof by showing that 8xC 8. It is enough to show
that every compact @, of X ix in 8. Let K be a compact G, of X. We write
K = 6, where each G, is open in X.

F"‘i.x the integer . For any z ¢ K, £ ¢ G, and hence there is a finite
dimensional cylinder open set H, such that r ¢ H,C G,. Since the class
of open Baire subsets of any compact Hausdorff kpace i3 a base for its
topology, we can suppose that the base of the cylinder xet H, is an open
Baire subset. Thus H, ¢ S. {H:);(x is 8 covering of K and since K ix
compact, we ean find .., 2z ¢ K such that KCUH, CG,. Write

H,=JH,, Then H,«¢S§ (since each H, ¢ 8) and KCH,C@,.
i
Since K ={)}6, we must have K ="H,. It then follows that

K «8 since H,,(TS’ for each ». This compler.;s the proof.
Now let X, (a«l) be compact Hausdorlf spaces and let 8§, = 8y,

For any FCI we define Xp = ﬂX 80d Sp = Sx,. 8 is the product

a-field generated by {S.: a cF) For any pair F, @ such that PCQC,
there is & map of 8 into 8 that takes A € 8p into the set Age S,
which is & cylinder subset of X with base 4 in Xy. For two measures m,
» respectively defined on 8§y and 8g, we write m < nif m(4) =n(do) for
all 4 ¢« 8. Suppose now that for each finite F C I, mp is a Baire measure
on Xp such that my, < mp, whenever F, and F, are two finite sets xuch
that F, CF, C I. The Kolmogorov consistency theorem {cf. H, p. 212 for
a proof when each X, is the unit interval {0, 1]; the modifications re.
quired in that proof to yield this more general version are easy to see)
asserts that there ig a unique Raire measure m on X (= X,) such that
mp <m for all F.

ProrosrTioN 2.4, If for each finite F C I, Xr has property R, then X
(= X)) has properiy R.
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Proof. X is the set of all functions x on I snch that r(a) e X, for
each a ¢ I, For any J CI we write ag x, the restriction of z to J. z, is
a point of X,. For any f¢ C{Xy) we define fr on X by setting fe{z}
= flxs) for each reX. [reC(X) and f Cr={fr: [ C(Xp)}, Cr is
& linear manifold of C(X). Let C=»rLrJuu Cy. C is dense in C{X) in the

S 8.

topology of uniform convergence ([3), p. 57).

Now let A be a non-negative linear functional on C{X). Defining
Aron C(XF) by setting .1s{f)=A(fr) for all e C(Xf), we obtain a non-
negative linear functional .1p on C(XF). Since F is finite, .Tr has prop-
erty R and hence there is a Baire measure mg on Yp such that .1-/)
= f fdmp for all f ¢ C{.Xy). This Balre measure mg is uniquely determined
(proposition 1.2) and hence if FyCF., ms, < mg,. By the Kolmogorov
theorem, there is a unique Baire measure m on X such that ms < m for
each finite FCJ, Define .1°g) = [ gdm for all yeC(X).

It is easily seen that .1 = A°* on C. Since C is dense in (X} in the
topology of uniform convergence and since .1 and .1* are continuoux
in this topology, it follows that A = 4* on C{X). This proves that .1
has the integral representation and hence that X has property R.

THEOREM (F.Riesz). Any compact Hausdorff space has property R.

Proof. It is well known that any compact Hausdorff space is the
continnous image of a closed subset of a product of spaces X, (ael)
where for each a, X, is a space consisting of the two points 0 and 1 with
the discrete topology. In view of propositions 2.1-2.4, it is enough to
prove that X has property R for each finite F C I. This is trivial since
Xp is finite,

8. In this section we discuss the Riesz theorem in the locally com-
pact Hausdortf case. Throughout this section, K denotes (with or withont
auffixes) non-empty compact G,8 of .X. For any K, Sg denotes the o-ring
of subsets of K which are Baire sets of X. If K, C K,, then Sg, C 8x,
and %}Sx is & ring. The o-ring generated by this ring is Sx.

We derive the integral representation of an arbitrary non-negative
linear functional on L(.X) by first forming measures over Sx and then
extending these to Sx. We prove s preliminary proposition.

ProrosITION 3.1. For each K ldt my denole a finite measure on Sg,
and for K, C K, let mg, = my, on Sg,. There cxists one and only one Baire
measure m on Sy sitoh that m = mx on 8g.

Proot, Define T={J 8. T is a ring. For 4 « T, define m{4}= ug(d)

K

if 4¢8c. 1 Ais empty, m(4d)=0. If A is non-empty and 3y, and Sg,,
then A is & non-empty Baire subset of K, and K,. Consequently, K,~ K,
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is & non-empty compact @, and A €8x, x,. This shows that mg(4)
= mg,ng{A) = mg {A) and proves that m iz well defined on I. If
A,BeT then A <8y, and B« 8g, and hence 4, B, A4uB all belong
to 8x,,x,- This shows that m is additive on T. Lastly let {4,} be a se-
quence in T such that A, }@. 4, ¢8g, and hence A, ¢ Ix, for n>1
(proposition 1.4 remark 2). Bince mg,(4,)>0 and m =mg, on Sy,
it follows that m(A,)—+0. Thus = is & measure on 7. It can then be
uniquely extended Lo the o-ring generated by T, i.e. to S§x. Since
each compact @, belongs to T and since m is finite on 7, it follows that
m i3 & Baire measure.

Bemark. If € is a compact set there is a compact G, K containing ¢
{H, p. 218). For any { < L{X) vanishing outside € we bave [ jdm= [ fxdmg
K

where /g is the restriction of / to K.

Now let A be an arbitrary non-negative linear functional on L({X)
and K CX. For any f> 0 defined and continuous on K, we can find
a decreasing sequence {f,} in L(X)* such that

=10 4 S

Define Ag(f) = lim A(f,). Since A(f,) is decreasing, this )imit surely

exists and it is perfectly straight-forward to show that this limit is in-
dependent of the sequence {f,}. Further, any f defined and continuous
on X is capable of being written as f,—f, where f,,f, are >0 and
continuous on K. Define Ag(f) as Aglf,)—Axlfy). It is easy to verify that
Ag i8 & non-negative linear functional on C(K). Let mg be the Baire

measure on Sg such that Az(f) = fldmx for all /¢ C(K). Our aim now
X

is to show that the {mg)gcx satisfy the conditions of proposition 3.1.
By definition Ax{fz)= A(f) whenever f¢L(X) and vanishes outside X.

ProrosrTioN 3.2. Let K, CK, and f), [, be lwo functions such that
he C(E), fye C(EY* and 0 < fi < fy on K. Then Agf) < Agdh)

Proof. Let {u,} snd {v,} be two decreasing sequences in L(X)*
guch that

Mz) i ek,

R _ f zek,,
Smula) =\"0" i ek

JSim o(a) = M:) ¥ z¢K,.

Then
4xh) =”1§2A(v-) and  Ag,(fy) ='1£21°A (o).
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If 0, = maX(#,,,), then 1, e L{X)* and {w,} i* decreasing. Further
lim wy = lim v,. Consequently Ag,(fy) = lim./A(1,). But since u, < iy
o n—0

;or all n,'A (ttn) < A(w,) for all n
This proves the result.
PropostrioN 3.3. 1f K,C K,, then mg, = mg, on Sg,.
Proof. It suffices (proposition 1.2) to show that for any gy ¢ C(L'))%,

f gdmg, = J gdmg, .
F<3 Ky

Let {g,} be a decrensing sequence in L(.X)* such that
il z¢k,,
it z¢kK,.

Let g, be the restriction of g, to X,. Then, from proposition 3.2 we de-
duce that for all »

lim gu{x) = {ﬂ(:)

J gdmg, < [ grdmg, <Alga).
Ey

K

As n-—o0, the right extreme term tends to
Axi) = [ gamg,
K
while the middle term tends to
{5, (tim ghymg, = [ gang,
By A0 E 11

{monotone convergence theorem). This proves the proposition.

THEOREM (F. Riesz). Every non-negativeli near functional on L(X) has
an inlegral representation.

Proof. Let A be a non-negative linear functional on L(X). Form
the measures {mg} and using propositions 3.1 and 3.3 we obtain the
unigae Baire measure m on 8x. It ix then obvious that A(f) = .I‘ fdm
for all f ¢ L(X). This completes the prool.

4. The purpose of the remarks of this section is to investigate the
effect of the assumption on X in the classical form of the Riesz theorem.
The conclusion reached can be paraphrased to the effect that the theo-
rem is valid without any restriction. Thus it turns out that the restrictions
of Hausdorffuess and local compactness are only to have a sufficiently
wide L{X).

Let X be a topological space. A subset LC C(X) is called an ideal
it (i) L is linear, (i) f ¢ L, g« C(X) sud |g]<|f| imply that g« L. Xf L is
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an ideal and /, g ¢ L, then |f), max(f, g) and min(f,g) are all m L. 8(L) is

defined as the minimal o-ring with respect to which all functions of L

are measurable. A non-negative linear functional A on an ideal L is

called an tnlegral if there i8 a unique measure m on 8(L) such that

A{N) = [ hdm for all h¢L. For any ideal L, let N, = n Z(f) where
€.

Z(f)= (=: f(z) = 0}. N is & closed (possibly empty) subset of X. Let Ly
be those functions of C(X) which vanish outside compact subsets of
X—N,. Let L denote the closure of L in C(X),

PropostTioN 4.1, Let X be a compact Hausdor/f space and L an
ideal of C(X). Then LyCLCL and Ly is dense in L (hence in L).

Proof. We first show that Ly C L. Iet f « Ly. We show that f ¢ L.
We can assume f > 0. Let K be a compact subset of X —N, such that f
vanishes outside K. For each z ¢ K, since x¢ X—¥,, there is a geL*
such that g(z) >0 and hence we can find g, ¢ L* such that g-{z) > f(z).
We can thus find an open set G, containing x such that gly) > f(y) for
all y e« G;. {G:)zex is & covering of K from which a finite subcovering
{Gy) s extracted. If k= max(gy, ..., §r), then k>f on K, Since f=0
outside K and & > 0, it follows that 0 <f < h. Since k¢ L and L is an
ideal, f ¢ L.

We now show that Ly is dense in L. In fact, we prove that for any
{0 vanishing on ¥, there it an increasing sequence {f,} in L} such
that f. t/ uniformly. Let f>0,=0 on N, and » be any integer. Now
define K, = {z: f(z)>1/n}. K,CX—-N, and K, is compact. K, being
a compact subset of X —¥;, we can have a function g, continuous on
X-Ny,,=fonK,, ishing ountside a p subset of X —N; and
0<g.<f on XN, (proposition 1.3). If we define g, as 0 on Xy,
gn ¢ Ly and 0 < g, < /. Further, 0 <f(z)—ga(z) < 1/» for all 2. If we now
define f, = max(gy, ..., g), {fa} is an increasing sequence in Ly increasing
uniformly to /. This completes the proof.

CoROLLARY. We have &t once L= {f: e C(X), = 0 on Ny}. Thus if
L is closed, L ists of all conti Jundti ishing on N..

We can now rephrase the Riesz theorem as follows.

ProrosITION 4.2. Lt X be a compact Hausdorff space and L an
1deal of C(X). Then any now-negative o-smooth linear funcional on L is
an integral.

Proof. Let A be an arbitrary ¢-smooth non-negative linear fume-
tional on L. A is a non-negative linear functionsl on Ly and hence for
a unique Baire messure m on ¥ —N;, A(h)= [hdm for all hely.
Since Ly is dense in L, the minims! o-rings induced by Ly and L co-
incide and hence m i8 detined on §(L). We now show that A(h) = f hdm
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for all heZ. Let A «L. We can suppose that A > 0. There is then a se-

quence {f,} in L increasing to k. Since 18 a-amooth, A(f.)+A(A). But

Alfs) = [ fsdm for all 5. Hence, [ f,dm { A(h). This shows that [kdm < co

and Is equal to lim [ fudm. It follows that A(A) = / hdm and the proof
00

is complete,

We next show that the restriction of Hausdorfiness is nnnecessary.

ProrosITION 4.3. Let X be any compadt space and L an ideal of C(X).
Then every non-negolive o-amooth linear funciional on L iz an integral,

Proof. For z,y « X, we write z~y il g{z) = g(y), for all ge L. ~ is
an equivalence relation and let Y be the space of equivalence classes
furnished with the quotient topology. Let ¢ be the canonical map of X
onto Y. ¢ is continuous and hence ¥ is compact.

For & function f on X which is constant over the equivalence classes
(all functions of L are of this form), there is & nnique function f* on ¥
such that /= f*{t]. /« C(X) if and only if f* « O(Y). Let L*= {f*:{« L}
and define A* on L* by setting A%(f*) = A(f). A* is & o-smooth non-
negative linear functional on L* and L° is an ideal of C(X).

We note that Y is s Hausdorff space. If y,,5,«Y and y #y,,
17!(y,), and "'(y,) are different equivalence classes of X. Hence there
is & g « L taking different values on #~'(y,) and ¢*(y,) and hence g* takes
different values at y, and y,. This proves that ¥ is a Hausdorff space.

By proposition 4.2, there is a nnique measure m* on 8(L*) such
that A°(f*) = [f°dm*® for all f* < L*.

t maps X onto Y and it is easy to see that t™(§(L*)) = §{L). There-
fore ¢ and ¢ idered aa et 1 ions of §(L) onto §(L*) and
vice versa preserve countable unions and countable intersections, There-
fore there exists a unique measnre m on §(L) such that m*(4)=m {1~}(4)}
for all A ¢8(L*). For such an m, [gdm = [g*dm* for all g¢L (H, p. 163),

This completes the proof.

THEOREM. Every non-negative linear funciional on the spacs L(X)
{of 1 Tunot hing outside compact subsels of a topological
space X) s an integral,

Proof. All non-negative linear functionals on L({X) are o-smooth.
‘We deduce the theorem from proposition 4.3. Let .X* be the one-point
compactification of X. Any fe¢ZL(X) can be continuously extended to
an f* on X* by prescribing for it the value 0 at co. Let L* = {f*: f ¢ L(X)}.
I* is an ideal and 8(L) = S§(L*). The theorem then follows from pro-
position 4.3 since X* {s compaot.

Bemarke, Let X bo a compaoct Hauedorff space and L an ideal
of O(X). An interesting question arises: whén can we say that all non-
Fundamenia Mathessations, T, XLVL 18
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negative linear functionals on L are o-smooth? Modifying proposition 1.1,
we can gay thet if /¢ L implies /'™ ¢ L, then L has this property. For
example (by proposition 4.1, corollary) it turna out that all closed ideals L
have this property. What is the general characterization of such ideals?
We are unable to answer this question,
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