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1. Introduction. In this note, we shall use the methods of Black-
well [1] to prove the Coreduction Principle (stated below) for Souslin
sets in certain topological spaces and also establish a result on the
constitnents (defined below) of o Souslin set.

Let Y be a topological space. A subset A of T is said to be a Souslin
set if there exists o system {Ann,..n:}, indexed by all finite sequences of
natural numbers, of closed subsets of ¥ such that

«
A= N Annpom
(ng) k=t
where the union extends over all sequences of natural numbers.

A subset A of Y is said to be a bi-Souslin get it both A and ¥ -4
are Souslin sets.

An alternative way of desoribing Souslin sets is through sieves. De-
note by Q the set of all rationals in the open interval (0, 1), and label
the elements of @ as r,, ry, ... (We shall hold fixed throughout the paper
this particular labelling of the elements of Q). Any system (W, reQ},
indexed by the elements of @, of subsets of X will be called o sieve. By
the set sifted by the sieve {W,, r ¢ Q} is meant the set of all y ¢ ¥ such that
there is a sequencs {rs,} (possibly depending on y) of elements of @ such
that #a,> 74y > ... and y ¢ Wy, for all k> 1. The alternative way of
describing Souslin sets is this: A is a Souslin subset of ¥ if and only if
there is o sieve {Wr, r ¢ Q} of closed subsets of ¥ such that A is the set
sifted by {Wr,r¢@Q} (of. Theorems 9 and 10 in [3), p. 23).

Let A4 be a Souslin subset of ¥ and let {W,,r ¢ Q) be a sieve such
that A is the set sifted by {Wy,r ¢ @}. For each ordinal a < w, (= the
first uncountable ordinal), let 4, bo the set of all y ¢ X such that the
set {r ¢{: y ¢ Wy}, when equipped with the usual order on the rationals,
is of ordinal type a. The sets {A.: a < w;} aro called the constituents of
the Souslin set A relative to the sieve {Wr,r¢@}.
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The aim of this paper is to prove by game-theoretic methods the
following theorema.

TneoReM 1 (COREDUCTION PRINoIPLE). Let ¥ be a iopological space
in which every open tet i a Souslin set, If A, B are Souslin sets in ¥, then
there exist Souslin sets E, F in Y such that ACE, BC¥,AnB=EnVF
and EvF=1.

The olassical analogue of Theorem 1 (thet is, with ¥ a Polish space
and 4, B analytic subsets of Y) was established by Kuratowski [3].
Blackwell [1] used game-theoretic methods to prove the classical result,
We shall imitate Blackwell’s methods to prove Theorem 1.

THEOREM 2. Let T be a topological space in twhich cvery open el is
a Souslin set, Let A be a Souslin set in Y and let {W,, 5 ¢ Q} be any sieve
of closed subsets of ¥ such that A is the set sifted by {W,,r ¢ Q). Then the
constituenis of A (relative to {W,,r ¢Q}) are bi-Souslin subsets of Y.

Theorem 2 was proved by methods quite different from ours by
Rogers and Willmott (see corollary to Theorem 12 in [5), p. 30).

In the next section, we build up the machinery needed to prove
Theorems 1 and 2.

2. Sieves and games. Let Y be a topological space and lot {Wr, r €Q}
and {Z,,r ¢Q} be two sieves of subsets of 1. Following Blackwell (i},
we agsocinte with each y ¢ ¥ a two-person game G(y) as follows: Players I
and II choose rationals from Q alternately, player I being the first to
make a choice, each choice being made with complete information abont
previous choices of both players. A play 7 = (Ya,, 'ay) Fmyy oy ) 18 8 w0ins
for player 1 in G(y) it there is & natural number k such that re, > rmy> ...
ST ¥ e Wy, 6=1,2,.,k o> > >y, i=1,
2y.., k=1, and either #x, > rep, OF y ¢ Zr,,. The ploy =z i8 & win for
player T in G(y) if there is 8 k> 1 such that fm > fu> oo > Fupos
YeW, i=1,2,.,k-1, r,>r>.>fm, ¥, i=12, ..
wy k=1, and either rm, > 7w, OF ¥¢Wy,,. Finally the play = ends in
8 draw in G(y) if for every k 21, rm > fmpas ¥ € Wrpy Tue > Pagyyy 80
y¢2,.

1‘1.1us, each player at each atage tries to produce a rational reQ
which is strietly smaller than his previous choices and such that y < W
or y ¢ Z, according a8 whether player I plays or. player TI plays. The
first player to fail in this loses in the game G{y). If neither player fuils,
it is & draw.

Let P, bhe the ocollection of all finite sequences of elements of @
(including the empty sequence, which we denote by ¢) of even length,
let P, be the collection of all finite sequences of glements of ¢ of odd
length, and lot P = P, v P,. By a sirategy (in any of the games G(y))
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for player I (TT) is meant a funclion from P, (P,} to Q. Denote the set of
all strutegies for players T and TT by @ und ¥, respectively; that is, ¢ = Q"
and ¥ = @™ Equip @ and ¥ with the product of discrete topolog
on Q. Since P, and P, are countably infinite, we note that @ and ¥ x\ra
homeomorphic to ¥¥, where ¥ is the sct of all natural numbers and X
is equipped with the produet of diserete topologies on X.

A strategy ¢ for player T and » strntegy y for player 1T nniquely
determino a play (rmyy #a,; Figy Fagy o) 28 follows:

= ple),

Fup = P(Tmuy Pogy ey Tompesy Fugy T, K21,
and

e = Py Togg ooy Toury Py K2 1

We shall denote the play determined by player I using the strategy ¢
and player IT using the strutegy v by <p,p-. We say that ¢*e® is
a winning strategy in G(y) for player T if fov every yp € ¥, the play <% p
is a win for player I in @(y). Call a strategy ¢°* € @ u drasring strategy
for player T in G{y) if for every p ¢ ¥, the play <¢® v is & win for player I
in G(y) or the play <¢* ; ends in n draw in G(y). Analogous definitions
apply to winning and drvawing strategies for player IT,

We now prove a lemma which will he used in the sequel.

LEMMA. Let Y be a lopological space in which every upen ael is a Sonslin
set. Let {Wy,reQ} and {Zr,r €Q} be tico sieves of clwsed aubsels of T.
Define:

E = {yeY: player I has a drawing stralegy in G(y)}
and
F ={yeX: player II har a drawing strategy in G(y)}.

Then B and F are Souslin subsets of Y,

(Here, of course, G(y), ¥y ¢ Y, nre the games nssociated, us ubove, with
the sieves {Wy,r ¢Q} und {Z,reQ} of the lemma).

Proof, We shall prove that E is  Souslin ret. An anslogous proot
works for F.

Let H={y, @)« Yx®: ¢ in a drawing strategy for player I in
G(y)}. Observe that E iy the projestion of H to Y. Thus, if we cun prove
that H is a Souslin subset of ¥ X &, it will follow by o result of Rogers
and Willmott [4] that K ia a Bonalin get in Y., In fact, we shall now show
that H is bi-Souslin in Y x @, .

With oach 8equence (fm, Ty weey fopeyy Tupoy) € Py (When k=1, the
REQUENCO (Fmyy Fays ooy Fmeyy 'opy) 18 to b8 interpreted us tho empty
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sequence), we nssocinte 80t8 K (fm, Tuyy ey Pmecy Tapr)y LTy Tagy o
oy Pmpeyy Tupy) ADA M {Ting, ¥y oony Pmpyy py) 88 follows:

E(rmyy Tary ooey Pmaeay Poes)

k=1 k-1 k-1
= [,O‘ W"-, ht-nx Z’n,]x [Dl{?’ €D @ltmy Tayy ooy Tomeys o) = T} i B> 1
=¥Yx® ifk=1.

L(rmy Pay eoey Yorgegy P

= r%[W;X {9 € P2 glrm oy ooy Tmpy ) = 131y, K21,

H(Tmys Tagy woey Pmeys Poz)

=r(0('n,-'n;----,r-,-.»'.p,[)1’ X7 € P2 plmys Tayy ooy Foupeyy Toies) = 73]

where
Qmey Tugy oy Tmg gy Fop) = {re@ r 21w} iR 1
=0 ifk=1.

(union over the empty set is to be interpreted ns the empty set). It is
ensy to see thut the sets

K(rmy Tory ey Tmpars ')y

L{tmys Tayy ooy Tmers Tae)

M (rimgy ayy ooy Tmayy Tan)
are all bi-Souslin in ¥ X @, Finully, note that

H=J|Z(@) n[L{n) v Hs))
Py

where

P] = ..-Ql[{(run Tasy wers Yongy Tae) € ot Ty > Py a0 > Tay
. i=1,3,..,k=1}1v {¢}.

8ince P, is countable, it follows that H° is bi-Souslin in ¥ x @, and
80 H is hi-Souslin in Y x @, This completes the proof of the lemma.

3. Proof of theorems.

Proof of Theorem 1. Lot {W,,r «@} and {Z,r ¢ @} he sieves of
closed subsets of 1" such that A, B are, respectively, the scts aifted by
{Wr,reQ} and {Z;,reQ}. Lot {ds,a<w} and {B,,f<w} Le the
conatituents of A, B with respect to the sieves {W¥,, r ¢ @} and {Zr,r @},
respectively, For each y ¢ Y, lot G(y) be the gome associated with the
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sieves {Wr, r «Q} and {Z,, r ¢ @} ns in Bection 2. Let E and F be the sets
defined in the lemmsn of Section 2. We ghall prove that the sets E, F
have the reguired properties,

First, by the lemma of Section 2, F and F are Souslin subsets of Y.
Next, we note that

(1) E=Av Eg.(A. n}(J.B;)]

and

(2) F=Bu[U(Byn Jd.)].
<oy L

To ses this, let y ¢ A. Then there exists a sequence {rag} of elements of @
such that for every k >1, rm¢>rsp, ond ye W,,,:. Now consider
o strategy ¢* for player I defined by:

Py iy oy Py THL) = Tl

Tt is easy to see that ¢* is a drawing strategy for player I in the gnme G(y),
80 yeE. Next suppose that ye A, ~ By, where f <a<w,, Set H,
={reQ:yeW: and H, = {re@: y e Z;}. Then H, and H, are of ordinal
types a and B, respectively. Since f < a, there is a similarity mupping
(that I8, a one-to-one and order-preserving mapping) g which takes H,
onto a proper segment of H,. Choose an element r* ¢ H,—g(H,) and
define & strategy ¢* for player I (in the game G(y)) as follows:

g(e)=r*
and
My iy s Ty ) = glr) M e Hy
=1 if rieQ—H,,
where r’ is & fixed but arbitrary element of Q. It is not difficult to see

that ¢* i8 a winning strategy for player I in the game G(y), s0 y ¢ E.
Thus ED A v [ |J(dan | By)). Oonversely, suppose
«<m #Ze

yeAv[U(dan UB)].
a<e p<a

We distinguish two coses.

Case 1. yeB. As y¢ A, it follows that y e A, for some a < w;.
As H, is well-ordered while H, is not, it is clear that player IT has & winning
strategy in G(y). Indeed, the set H, contains a strictly decreasing sequence
{rsf} 80 that the strategy y* for player II defined by

Yo 4y ¥y oy gy Tiy ) = rad

wins for player IX in the game G(y). Hence y ¢ E.



184 A. Maitra

Case 2. y ¢ B. It now follows that y ¢ A, ~ Bp where a < f < a,,
Hence there iz o similarity mapping g’ from H, onto a segment of H,,
Define a strategy w* for player IT as follows:

@Oty Py ey Py s Ti_y ) = 9T(0%) if 7y, < H,,
=r if r, e @Q—H,,

where r’ is o fixed but arbitrary element of Q. It is clear that w*’ is a win-
ning strategy for player IT in the game G'(y), 80 that ¥ ¢ Z. We have thus
proved that

ECAv [°L<JM(A,, ~ }_()‘IB,)] y

from which equation (1) follows. Equation (2) follows analogously.

It is now straightforward to derive from equations (1)—(2) that
ACH, BCF,A~nB=En~Fand Ew F = Y. This completes the proof
of Theorem 1.

Proof of Theorem 2. Fix an ordinal a, < o, and choose a subset T
of @ so that T is of ordinal type a,. Define Z, = .Y if r ¢ 7 and Z, = %}
if r ¢ T. If B is the set sifted by {Z,, r ¢ @}, then plainly B = ©. Moreover,
By=0 if f % a and B < w, and By= Y if f = ap, where {Bs, < a,}
are the constituents of B relative to the sieve {Z,, r ¢ @}. Let {4., a < w,}
be the constituents of A relative to the sieve {W,, r ¢ @}. For each y ¢ ¥,
let @G(y) be the game associated with the sieves {W,, r ¢ Q} and {Z,, r ¢ @}
as in Section 2. Let #, F be the sets.defined in the lemma of Section 2.

By the lemma of Section 2, ¥ and P are Souslin subsets of. Y.
Moreover, the proof of Theorem 1 shows that

EB=Av (Jda.

a>ao

F=|JA,.

azae

It follows that | J A, is a Di-Souslin subset o° ¥, since Ew F =Y
aay

and

and E~F=0. As q, was arbitrary, we have proved that for every
ordinal 8 < w,, | J 4, is Di-Souslin. Consequently,
LX)

Aa = U Ag— U (1 Ap)
Bcla o<a pila

is a bi-Souslin subset of ¥. This completes the proof of Theorem 2.
Remark 1. Theorem 2 can be proved by means of classical methods
as follows. Let D be the Cantor set, which we shall think of as a count-
able product of copies of the two—element set {0, 1}. Dofine a sieve
{Pr, r € @} of closed subsets of D as follows: P,, = {t ¢ D: ¢, = 1} where ts
denotes the nth coordinate of t. Let G be the set sifted by {Pr,r <@}
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and let {G., a < o} be the constituents of @ relative to {Py,r «@). Then
it is known that the sets G, are Borel subsets of D (see [2], p. 272).
Now ider the ch istic function (in the sense of Marczewskl)

of the sieve {Wy,r «Q}, that is, f(y) = Z <D, (9)y ¥ € X, where Iy, ia
n=l

the indicator of the set Wy,. It is easy to verify that the function f ie

measurable between the spaces (T, §) and (D, B), where S ir the o-al-

gebra of bi-Souslin subsets of T and B the o-algebra of Borel subsets

of D. Moreover, for each a < an, 4a=f"'(&) (cl. [2], p. 408). Conse-

quently each A, is bi-Bouslin in T,

Remark 2. It is true that Theorem 1 can also be obtained by imitating
Kuratowski’s method in [3). But this involves suitably modifying the
sieves {W,,r¢Q} and {Z,,r«Q} with which we started and then the
sets E and F are no longer as naturally related to the orginial aieves as
in our proof.
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