M.TECH. (COMPUTER SCIENCE) DISSERTATION SERIES

ACCESS STRUCTURES FOR AN IMAGE DATA BASE

a dissertation submitted in partial fulfillments of the requirements for the M.Tech. (Computer Science) degree of the Indian Statistical Institute

By

SUDHANSHU SEKHAR KUILA

under the supervision of

AMARNATH GUPTA

&

S. K. PARUI

INDIAN STATISTICAL INSTITUTE

203, Barrackpur Trunk Road
Calcutta - 700 035.
Contents

1 Introduction .. 1

2 DESCRIPTION OF THE SPATIAL SKD-TREE STRUCTURE 3

3 DESCRIPTION OF THE DIFFERENT FUNCTIONS 5

4 ALGORITHMS AND RESULTS FOR QUERY SOLVING WHEN
OBJECTS ARE ISOTHETIC RECTANGLE 11

4.1 Main_program ... 11

4.2 ALGORITHM Search ... 13

4.3 ALGORITHM Insert ... 15

4.4 ALGORITHM Split .. 17

4.5 ALGORITHM Check_leaf .. 19

4.6 RESULTS : ... 20

5 ALGORITHMS AND RESULTS FOR QUERY SOLVING WHEN
OBJECTS ARE CONVEX POLYGONAL SHAPED. 26

5.1 M_Main_program ... 26

5.2 ALGORITHM M_Search ... 28

5.3 ALGORITHM m_insert .. 28
5.4 ALGORITHM M.Split ... 31
5.5 ALGORITHM M.Check_leaf 33
5.6 ALGORITHM Polygon_query_intersection 34
5.7 ALGORITHM Point_check_in_qregion 38
5.8 ALGORITHM Point_check_in_poly 39
5.9 ALGORITHM Find_area 42
5.10 RESULTS .. 43

6 Tables and Figures ... 46

7 REFERENCES .. 48
Abstract

A new indexing structure called **Spatial kd-Tree** is proposed in the book named, “Efficient Query processing in Geographic Information Systems” by Beng Chi Ooi. The new structure supports two types of search, namely the Containment search and Intersection search in order to facilitate the evaluation of queries involving spatial (geometric) objects. I have implemented the skd-tree structure for isothetic rectangular objects for retrieving all objects which are contained in or intersect with the isothetic query rectangle. I have extended the structure and have seen its implementation for convex polygonal objects keeping the query rectangle as before (i.e., isothetic rectangle).

Further extension is made for finding the intersection between convex polygonal object and isothetic rectangle and also for finding the area of the intersecting region.
1 Introduction

In Geographic Information Systems, the database represents a collection of geographic objects in a two dimensional map. Each geographic object can be classified as belonging to a particular entity class such as city, road, lake etc. Objects are described by their aspatial attributes (e.g., population, name etc) as well as their spatial attributes (e.g., location). Furthermore, they may be grouped into 3 generic spatial object classes namely, point, line, and region. Our project deals with region type objects.

On a given map, the geographic objects may intersect with or may contain other objects. In GIS, the entities have a physical location and extent in some spatial region of interest and queries involve identification of these entities based on their spatial or aspatial attributes and spatial relationships. Spatial relationships are intersection, containment, adjacency etc. Intersection can be used to answer queries of the form “which roads intersect with B. T. Road”.

Conventional database management systems are not suited to the task of efficient evaluation of spatial relationships. Some sort of spatial indexing mechanism must be supported. Without a spatial index, a query such as “Find all objects (e.g., lake) that are within a radius of 10 kms from I.S.I.” may require a search of the whole database. This will be grossly inefficient compared to the retrieving only objects in the neighbourhood of I.S.I.

One structure that has been proposed for spatial indexing structure, for efficient storage manipulation and the ease of information retrieval for non-zero sized objects is called spatial kd-tree (skd-tree). The skd-tree structure avoids storing the object duplication
and supports two types of search, namely intersection and containment search.

Input: A global map, objects (represented by a region in 2D-dimensional space) on the map and a query region.

Output: Retrieving of all objects which intersect with or contained in the query region that satisfies some geo-predicate.

To get output, first step is to store the geographic objects using skd-tree structure and later depending on search type retrieve all the objects within the query region.

Note that objects such as lake, road etc do not conform to any fixed shape. The methods of region decomposition and minimum bounding rectangles (MBR) are used to approximate irregularly shaped spatial objects. First we consider the objects as represented by isothetic minimum bounding rectangle. Later, we shall consider objects as represented by convex polygons.
2 DESCRIPTION OF THE SPATIAL SKD-TREE STRUCTURE

At each node of a skd-tree, a value (the discriminator value) is chosen in one of the dimensions to partition a k-dimensional space into two subspaces. The two resultant subspaces, HISON and LOSON, normally have almost the same number of data objects. Since a space is always divided into two, we require only one extra value for each subspace: the maximum of the objects in the LOSON subspace, and the minimum of the objects in the HISON subspace; along the dimension defined by the discriminator. Thus the structure of an internal node of the skd-tree consists of

1. Two child pointers;

2. A discriminator;

3. A discriminator-value;

4. The maximum value of upper-ordinate of objects in LOSON along the dimension specified by discriminator;

5. The minimum value of lower-ordinate of objects in HISON along the dimension specified by discriminator.

Hence, internal nodes are of the form

(disc, disc-val, loson-ptr, hison-ptr, max-loson, min-hison)
Where disc indicate the dimension that is being partitioned and disc-val is the value that partitions the space. The max-loson is the maximum range value of the LOSON subspace and the min-hison is the minimum range value of the HISON subspace along the dimension specified by the disc. loson-ptr and hison-ptr points to left and right child node respectively.

Leaf nodes are of the same form as the internal node. But in leaf nodes hison-.ptr is the address of the datapage in which objects identifier and its minimum bounding rectangle stored. min-hison and max-loson are respectively the minimum and maximum range values of the objects in the datapage along the dimension specified by disc.
3. DESCRIPTION OF THE DIFFERENT FUNCTIONS

Functions and Descriptions

ORDINATE (br,ty,dim):

Arguments - br: bounding rectangle; ty, dim: int;
 ty = 1 for upper and ty = 0 for lower ordinate of
 the bounding rectangle along dimension dim (dim = 0
 indicate X dimension, dim = 1 indicate Y dimension).
Value returned - br[2.dim + ty].

MAX (x,y):

Arguments - x,y: float;
Value returned - the maximum value of x and y.

MIN (x,y):

Arguments - x,y: float;
Value returned - the minimum value of x and y.
FIND_BOUND (ptr, count):

Arguments - ptr : page_pointer; count : integer (no. of objects in the datapage);
purpose - to determine dimension that has least coverage;
 process is as below:
 for all dimensions (i = 0 to 1) do
 calculate the covering rectangle;
 return that the dimension that have least coverage;
Value returned - 0 for X_dimension, 1 for Y_dimension.

CONTAINMENT (br1, br2):

Arguments - br1, br2 : bounding rectangle;
purpose - to check if br1 contained in br2.
Value returned - 1 if rectangle br2 contains br1 otherwise 0.
 The condition can be formulated as below:
ORDINATE (br1, 1, 0) <= ORDINATE (br2, 1, 0) and
ORDINATE (br1, 0, 0) >= ORDINATE (br2, 0, 0) and
ORDINATE (br1, 0, 1) >= ORDINATE (br2, 0, 1) and
ORDINATE (br1, 1, 1) <= ORDINATE (br2, 1, 1).
INTERSECT (br1, br2):

Arguments - br1, br2 : bounding rectangle;
purpose - to check if two bounding rectangles intersect or not.
Value returned - 1 if rectangle br1 intersect with br2 otherwise 0.
The condition can be formulated as below:
ORDINATE (br1, 0, 0) \leq ORDINATE (br2, 1, 0) and
ORDINATE (br1, 0, 1) \leq ORDINATE (br2, 1, 1) and
ORDINATE (br1, 1, 0) \geq ORDINATE (br2, 0, 0) and
ORDINATE (br1, 1, 1) \geq ORDINATE (br2, 0, 1).

MIN_RANGE (ptr, count, dim):

Arguments - ptr : page-ptr; dim : dimension;
 count : int (no. of objects in the datapage);
Value returned - the minimum range value along dimension,
dim of objects in the datapage to which ptr is pointing.
MAX_RANGE (ptr, count, dim):

Arguments - ptr : page-ptr; dim : dimension;
 count : int (no. of objects in the datapage);

Value returned - the maximum range value along dimension
 dim of objects in the datapage to which ptr
 is pointing.

longest_dim_subspace (ptr):

Argument - ptr : page_pointer;

purpose - to determine the longest dimension of the space
 which contains all the objects in the page ptr.

Value returned - 0 if X is the longest dimension of the
 space, otherwise 1 (i.e., Y is the longest
 dimension of the space).

bound_rec (poly, rect):

Arguments - poly : convex_polygon;
 rect : isothetic_rectangle.

purpose - given the vertices of a convex polygon it deter-
 mines the isothetic minimum bounding rectangle
 of the polygon.
Value returned - isothetic minimum bounding rectangle through argument rect.

CENTROID (mbr, dim):

Arguments - mbr : isothetic minimum bounding rectangle
dim : int (0 for X_dimension, 1 for Y_dimension);
Value returned - centroid of the mbr along dimension dim.

distance (pt1, pt2):

Arguments - pt1, pt2 : point;
Value returned - distance between two points.

area_triangle (pt1, pt2, p3):

Arguments - pt1, pt2, pt3 : point;
Purpose - to find the area of a triangle formed by three points.
 This is done by finding the distance of three sides of the triangle and using the result,
 \[area = s(s - a)(s - b)(s - c). \]
Value returned - area of the triangle.
seg_intersect (pseg, qseg, pt_intersect):

Input: pseg - array of two terminal points of the edge
of a pentagon;
qseg - array of two terminal points of the edge
of a query rectangle.

Value returned - return 0 if segments does not intersect,
otherwise return 1 and the point of intersection
through the argument pt_intersect.

Purpose - Function for checking whether edge of a pentagon
and edge of a query rectangle intersect or not.
if they intersect, obtain the point of inter-
section. The procedure is as follows:
if the segments are parallel then return 0;
else find the point of intersection;
if the point of intersection cuts internally
to both the segments then set pt_intersect
and return 1;
otherwise Return 0;
4 ALGORITHMS AND RESULTS FOR QUERY SOLVING WHEN OBJECTS ARE ISOThETIC RECTANGLE

Here we represent object and query region each as an isothetic rectangle. An input file which contains record of each object consisting of object identifier and two corner vertices. A query retrieves either all objects which intersect with or all objects contained in the query rectangle. First we store the objects using skd-tree. Leaf node of the tree points to the datapage. Each datapage can hold a fixed number of objects. The structure of each entity in the datapage is of the following form

\[(\text{obj.id, lo.x, up.x, lo.y, up.y})\]

where \text{obj.id} is the object identifier. \text{lo.x} and \text{up.x} are the lower and upper bounds of \text{X.ordinate. lo.y and up.y} are the lower and upper bounds of \text{Y.ordinate.}

Search starts from the root of the tree. The algorithm search and some other required algorithms described below:

4.1 Main program

Let \text{fptr} is the input file pointer.
read first record from input file.
create a node say, root;
create a datapage;
put the record into datapage;

/* initially root is the leaf node */

root.hison_ptr points to datapage;
root.loson_ptr = NULL;
root.disc_val = 1;

Calculate dim, is the shortest side of the object;
set root.disc to dim;
set root.max_loson and root.min_hison to maximum
and minimum value of the the object along dim
respectively.

while not EOF do
{
Read the next record from input file, Store it in obje;
INSERT (obje, root);
}

Read the mapspace say, br (i.e, the rectangle
in which all objects lies);
Read the query rectangle say query.region;
read search type say , search.ty;
SEARCH (root, br);
close input file;
end_main;
4.2 ALGORITHM Search

Input: node - an intermediate or a leaf node;
 initially it is the root.
 br - the subspace of the current node;
 initially the map space.
Output: A list of objects.
Comment: Traverse the tree from the root. The process
 of searching is done recursively.
 search_ty - search type (containment or
 intersection).
 query.region - the query region which is
 isothetic rectangle.
 lo.br, hi.br - bounding rectangles used to
 define LOSON and HISON subspaces.

SEARCH (node, br)

if node is a leaf node then
{
 ORDINATE (br, 0, node.disc) = node.min-hison;
 ORDINATE (br, 1, node.disc) = node.max-loson;
 if (INTERSECT (br, query.region)) then
 CHECK.LEAF (node.hison.ptr, node.disc.val);
 /\ here node.disc-val contains no. of objects in the datapage */
return;
}
hi_br = br;
lo_br = br;

/* rectangles for HISON and LOSON subspaces */
if search_ty is containment search then
{
 ORDINATE (lo_br, 1, node.disc) =
 \min (node.disc_val, node.max_loson);
 ORDINATE (hi_br, 0, node.disc) =
 \max (node.disc_val, node.min_hison);
}
else /* an intersection search */
{
 ORDINATE (lo_br, 1, node.disc) = node.max_loson;
 ORDINATE (hi_br, 0, node.disc) = node.min_hison;
}
if (INTERSECT (lo_br,query_region)) then
 SEARCH (node.loson.ptr, lo_br);
if (INTERSECT (hi_br,query_region)) then
 SEARCH (node.hison.ptr, hi_br);
end SEARCH.
4.3 ALGORITHM Insert

New records are added to the data page, and the page is split if it overflows. As the tree is traversed, the algorithm determines the branching direction of each node and updates the node if the minimum bounding rectangle (MBR) of the object extends over the node boundary. On reaching a leaf node, the data page is fetched and insertion may be performed.

Input : node - an intermediate node or a leaf node;
 initially the root.
 : obj - an isothetic rectangular object to be inserted.
Output : the updated skd-tree.
Comment : Use the centroid to determine the place of an
 object. A split occurs if the page overflows.

INSERT (obj, node)

if node is a leaf node then
{
 fetch the data page address by node.hison.ptr;
 if node.dic_val is < page.size then
 {
 insert the record into the data page;
 add 1 to node.dic_val;
dim = FIND_BOUND (node.hison.ptr, node.disc.val);
if (dim == node.disc) then
{
 node.min.hison =
 MIN(ORDINATE(obj, 0, dim), node.min.hison);
 node.max.loson =
 MAX(ORDINATE(obj, 1, dim), node.max.loson);
}
else /* new boundaries in the leaf node */
{
 node.disc = dim;
 node.min.hison =
 MIN_RANGE(node.hison.ptr, node.disc.val, dim);
 node.max.loson =
 MAX_RANGE(node.hison.ptr, node.disc.val, dim);
}
else
{
 create a new internal node say, in_root;
 split (node, in_root);
 INSERT (obj, in_root);
} return;
}
/* for internal node */
if (CENTROID (obj, node) < node.dic_val) then
{
 /* the centroid is in the LOSON subspace */
 node.max_loson =
 MAX(ORDINATE(obj, 1, node.dic), node.max_loson);
 INSERT (obj, node.loson.ptr);
}
else /* the centroid is in the HISON subspace */
{
 node.min_hison =
 MIN(ORDINATE(obj, 0, node.dic), node.min_hison);
 INSERT (obj, node.hison.ptr);
}
end_INSERT.

4.4 ALGORITHM Split

Input : node - the leaf node whose data page is to be split.
Output : an internal node which is pointing to two leaf nodes.
Comment : Data page to be split if there is no room for inserting another object.
In_root is a internal node which will be created.

split (node, in_root)

Get the dimension dim =

 longest_dim_subspace (node.hison.ptr);

for all objects of the page node.hison.ptr

 (i = 0 to page.size - 1) do

 calculate centroid[i] =CENTROID(object[i], dim);

Order the objects in the data page node.hison.ptr

in the ascending order of their centroid along

dimension dim;

Calculate disc_value be the Halfway between object

m and m + 1 along dimension dim;

Partition the objects comparing their centroid

along dim with disc_value;

set in_root.disc_val to disc_value;

Create two new datapages and redistribute objects

of the old datapage into new datapages by comparing

centroid of the objects with in_root.disc_val;

Create two new leaf nodes;

Father of the old leaf node will point to the in_root;

delete old leaf node and also old datapage;

Link in_root.loson_ptr and in_root.hison_ptr to

left_leaf node and right_leaf node respectively;
Set all other fields of internal node and leaf
nodes as done in insertion algorithm;
return;
end_split.

4.5 ALGORITHM Check_leaf

Input: node - page_ptr;
 count - integer(no. of objects in the datapage);
 search_ty : char (search_ty = 'i' for intersection
 search, and = 'c' for containment search);

Output: get all objects in the data page which contained
 in / intersect with the query rectangle.

Comment: Query rectangle passed globally to the function;
 each object in the datapage checked whether it
 intersects or is contained in the query region.

CHECK_LEAF (node, count)

temp : array of object;
 /* temp assigned to the datapage to which node
 is pointing. */

if (search_ty == 'i') then {

for all entities in the datapage(j = 0 to count) do
 if (INTERSECT (temp[j], query.region)) then display
 temp[j].object.name;
 return;
}

if (search_ty == 'c') then
{
 for all entities in the datapage(j = 0 to count) do
 if (CONTAINMENT (temp[j], query.region)) then display temp[j].object.name;
 return;
}
end_CHECK_LEAF.

4.6 RESULTS:

Table - 1.1 and Fig - 1.1 in the last section shows the record of objects and geographical representation of the objects. With the the records in the Table - 1.1, the steps of tree construction during insertion are shown below:

Each node has following structure

<table>
<thead>
<tr>
<th>disc</th>
<th>disc-val</th>
<th>l.ptr</th>
<th>r.ptr</th>
<th>l.max</th>
<th>r.min</th>
</tr>
</thead>
</table>

20
Step 1:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>nil</th>
<th>r.ptr</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>40</td>
<td>30</td>
</tr>
</tbody>
</table>

Step 2:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>2</th>
<th>nil</th>
<th>r.ptr</th>
<th>15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>5</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 3:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>3</th>
<th>nil</th>
<th>r.ptr</th>
<th>15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>5</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 1:

Step 5:
Step 6:

```
0 2 nil r.ptr 15 5
```

```
1 3 nil r.ptr 60 30
```

```
b 5 15 5 10
```

```
c 10 15 20 25
```

```
1 28.75 l.ptr r.ptr 25 30
```

And So on......
The result of the query search shown below:

Input lower bound of x for map space: -1
Input upper bound of x for map space: 70
Input lower bound of y for map space: -1
Input upper bound of y for map space: 70

RESULT OF INTERSECTION SEARCH:

Input lower bound of x for query region: 8
Input upper bound of x for query region: 42
Input lower bound of y for query region: 8
Input upper bound of y for query region: 32

Input c for containment search otherwise.
Input i for intersection search: i

Query region intersects with objects whose names are: b, c, g, h, j, a, f, k
RESULT OF CONTAINMENT SEARCH:

Input lower bound of x for query region: 12
Input upper bound of x for query region: 42
Input lower bound of y for query region: 8
Input upper bound of y for query region: 42

Input c for containment search otherwise, input i for intersection search: c

Query region contains objects whose names are: g, f, k
5 ALGORITHMS AND RESULTS FOR QUERY SOLVING WHEN OBJECTS ARE CONVEX POLYGONAL SHAPED.

Here we represent each object as a convex pentagon and query region is an isothetic rectangle. An input file which contains record of each object consisting of object identifier and five vertices of the pentagon. Query is to retrieve all objects which intersect with or contained in the query rectangle and also to obtain the region and area of intersection. We shall store the objects using skd-tree. Leaf node of the tree points to the datapage. Each datapage can hold a fixed number of object. The structure of each entity in the datapage is of the following form

\[(\text{poly (obj.id, v1, v2, v3, v4, v5); obou(lo.x, up.x; lo.y, up.y)})\]

where \text{obj.id} is the object identifier. \text{vi(x, y)}, is the ith vertex of a pentagon. \text{lo.x} and \text{up.x} are the lower and upper bounds of X.ordinate of its isothetic MBR. \text{lo.y} and \text{up.y} are the lower and upper bounds of Y.ordinate of its isothetic MBR.

Here we consider objects which are represented by a convex pentagon. Necessary algorithms which are used for solving queries are described below:

5.1 M.Main_program

Let \text{fptr,optr} are the input and output file pointers respectively;
read first record from input file say, poly;
create a node say, root;
create a datapage;
call bound_rec(polygon, bounding_rectangle);
put the polygon and its bounding_rectangle into
datapage; /* initially root is the leaf node */
root.hison.ptr points to datapage;
root.loson.ptr = NULL;
root.disc.val = 1;
Calculate dim, is the shortest side of the
bounding_rectangle;
set root.disc to dim;
set root.max.loson and root.min.hison to maximum and minimum
value of the the bounding_rectangle along dim respectively.
while not EOF reached do
{
Read the next record from input file, Store it in polygon;
call bound_rec(polygon, bounding_rectangle);
M_INSERT (polygon, bounding_rectangle, root);
}
Read the mapspace say, br (i.e, the rectangle in which
all objects lies);
Read the query rectangle say, query_region;
read search type say, search_ty;
M.SEARCH (root, br);
close input and output file;
and main;

5.2 ALGORITHM M.Search

Algorithm M.Search is same as algorithm Search which is described previously. Only difference is the CHECK.LEAF function which is replaced by M.CHECK.LEAF function.

5.3 ALGORITHM m.insert

New records are added to the data page, and the page is split if it overflows. As the tree is traversed, the algorithm determines the branching direction of each node and updates the node if the minimum bounding rectangle(MBR) of the object extends over the node boundary. On reaching to a leaf node, the data page is fetched and insertion may be performed.

Input : node - an intermediate node or a leaf node;
 : initially the root.
 : polygon - the object which is a convex polygon;
 : mbr - isothetic minimum bounding rectangle of the polygon to be inserted.

Output : the updated skd-tree.
Comment : Use the centroid of mbr to determine the place of a polygonal object.

A split occurs if the page overflows.

M_INSERT (polygon, mbr, node)
if node is a leaf node then
{
 fetch the data page address by node.hison.ptr;
 if node.disc.val is < page.size then
 {
 insert the polygon and mbr into the datapage;
 add 1 to node.disc.val;
 dim = FIND_BOUND (node.hison.ptr, node.disc.val);
 /* FIND_BOUND uses only mbr of the polygon */
 if (dim == node.disc) then {
 node.min.hison =
 MIN (ORDINATE(mbr, 0, dim), node.min.hison);
 node.max.loson =
 MAX (ORDINATE(mbr, 1, dim), node.max.loson);
 }
 else { /* new boundaries in the leaf node */
 node.disc = dim;
 }
 }
}
node.min_hison =
 MIN_RANGE(node.hison.ptr, node.disc.val, dim);
node.max_loson =
 MAX_RANGE(node.hison.ptr, node.disc.val, dim);
/* MAX_RANGE and MIN_RANGE uses only mbr of the polygon */
}
else
{
 create a new internal node say, in_root;
m_split(node, in_root);
M_INSERT(polygon, mbr, in_root);
}
return;
/* for internal node */
if (CENTROID(mbr, node) < node.disc.val) then
{
 /* the centroid is in the LOSON subspace */
 node.max_loson =
 MAX (ORDINATE(mbr, 1, node.disc), node.max_loson);
 M_INSERT (polygon, mbr, node.loson.ptr);
}
else { /* the centroid is in the HISON subspace */
 node.min_hison =
 MIN (ORDINATE(mbr, 0, node.disc), node.min_hison);
 M_INSERT (polygon.mbr, node.hison_ptr);
}
end M_INSERT.

5.4 ALGORITHM M_Split

Input : node - the leaf node whose datapage is to be split.

Output : an internal node which is pointing to two leaf nodes.

Comment : Data page to be split if there is no room for inserting another object. In_root is a internal node which will be created.

m_split(node, in_root)
Get the dimension dim =
 longest_dim_subspace(node.hison_ptr);
/* to determine longest dimension, use mbr of the objects */
for all objects of the page node.hison_ptr
 (i = 0 to page.size - 1) do
calculate centroid[i] = CENTROID (object[i].mbr, dim);
Order the objects in the datapage node.hison_ptr in the ascending order of their centroid along dimension dim;
Calculate disc_value from objects' mbr be the Halfway between object m and m + 1 along dimension dim;
Partition the objects comparing their centroid of mbr along dim with disc_value;
set in_root.disc.val to disc.value;
Create two new datapages and redistribute objects of the old datapage into new datapages by comparing centroid of the mbr with in_root.disc.val;
Create two new leaf nodes;
Father of the old leaf node will point to the in_root;
delete old leaf node and also old datapage;
Link in_root.lozon_ptr and in_root.hison_ptr to left_leaf node and right_leaf node respectively;
Set all other fields of internal node and leaf nodes as done in insertion algorithm;
return;
end m_split.
5.5 ALGORITHM M_Check_leaf

Input : node - page.ptr;
 count - integer (no. of objects in the datapage);
 search_ty : char (search_ty = 'i' for intersection
 search, and = 'c' for containment search);

Output : get all objects in the data page which contained
 in / intersect with the query rectangle. Obtain
 the region of intersection and its area.

Comment : Query rectangle and optr passed globally to
 the function.
 optr is the file pointer where intersection
 and area stored.

M_CHECK_LEAF(node, count)

temp : array of object and its NBR;

/* temp assigned to the datapage to which node is pointing. */
if (search_ty == 'i') then
{
 for all entities in the datapage (j = 0 to count) do
 polygon_query_intersection(temp[j].poly, query_region, optr);
 return;
}

33
if (search_ty == 'c') then
{
 for all entities in the datapage (j = 0 to count) do
 if (CONTAINMENT (temp[j].obou, query.region)) then
 polygon_query_intersection(temp[j].poly, query.region, optr);
 return;
}
end M_CHECK_LEAF.

5.6 AGORITHM Polygon_query_intersection

Algorithm for determining the vertices of intersection of a convex pentagon & query rectangle and also the area of the intersecting region.

Input : q.rect - is a query rectangle;

 poly1 - is a convex pentagon with identifier and vertices.

 optr - is a pointer to the output file in which intersecting polygon & its area stored.

Output : A file of record which consist of intersecting polygon and its area.

Comment : The process is as below :

 all the vertices of the pentagon which are inside
 the query region, stored into an array.

34
If a corner vertex of the query region is inside the pentagon, are also stored in the array. Also store all the intersecting points of pentagon and query rectangle into that array. Get the centroid of the points in the array. Determine the polar angle of the vertices in the array from centroid. Sort the points w.r.t their polar angle. Finally, we shall get the vertices of the intersection. To get the area of intersection, we draw the triangles which are formed by centroid and other two consecutive vertices of intersection. Adding the area of each triangle we get the area of the intersection.

```
polygon.query.intersection (poly1, q.rect, optr)
poly : array of the vertex of the pentagon;
temp : array of the vertex of the q.rect;
q.count, a_count : integer;
arr : array of vertex;
a_count = q.count = 0;
store the vertices(x,y) of poly1 into poly;
for all vertices in poly ( i = 0 to 5 ) do
    if(point.check_in_qregion (poly[i].x, poly[i].y, q.rect)) then
        /* vertex is inside the query rectangle. */
```
{
 arr[a_count] = poly[i];
 add 1 to a_count;
}

if (a_count == 5) then
 /* All vertices of the pentagon are inside the query
 rectangle. So, pentagon itself is the intersection. */
 {
 area_of_intersection = find_area (arr, a_count);
 put the vertices of intersection & area_of_intersec%
 tion into output file through optr;
 return;
 }

store vertices of q_rect to temp;
for all vertices in temp (i = 0 to 4) do
 if (point_check_in_poly (temp[i].x,temp[i].y, poly)) then
 { /* vertex is inside the pentagon. */
 arr[a_count] = temp[i];
 add 1 to each a_count and q_count;
 }

if (q_count == 4) then
 /* All vertices of the query region are inside the
 pentagon. So, query region itself is the intersection. */
{
 area_of_intersection = find_area (arr, q_count);
 Put the vertices of intersection & area_of_intersection
 into output file through optr;
 return;
}

for each edge of the pentagon do
{
 for each edge of the query.region do
 if(seg.intersect (poly_edge, query_edge, intersect.pt)) then
 {
 store intersect.pt into arr;
 add 1 to a_count;
 }
 }

 /* Now arr contains all the vertices of the intersection
 but, vertices are not ordered. Also arr may contain
 duplicate points */
 if (a_count < 3) then return;
 /* Because intersection of polygon and query region
 should be at least a triangle */
 Let centre(x,y) be the centre of the intersection obtained
 by averaging all the vertices of arr;

 37
Calculate the polar angle of each vertex of intersection from centre;
Order the vertices of intersection by ordering polar angles;
Remove all the duplicate vertices having same polar angle.
Hence get an array say, final_array of ordered vertices of intersection and no. of vertices say, final_count;
/* Next we calculate the area of intersection */
area_of_intersection = find_area(final_array, final_count);
put final_array and area_of_intersection into output file;
return;
end_polygon_query_intersection.

5.7 ALGORITHM Point_check_in_qregion

Algorithm for checking a point whether it is inside of an isothetic query rectangle or not.

Input : pt(x,y) is a point;
 q.rect is a query rectangle;
Output : if pt(x,y) inside the query region then return 1,
 else return 0;
point_check_in_qregion (pt.x, pt.y, q.rect)
if ((q_rect[0] < pt.x) and (q_rect[1] > pt.x) and
 (q_rect[2] < pt.y) and (q_rect[3] > pt.y)) then return (1);
else return 0;

/* point outside of the query_rectangle */
end_point_check_in_qregion.

5.8 ALGORITHM Point_check_in_poly

Algorithm for checking a point whether it is inside of a convex pentagon or not.

Input : pt(x,y) is a point;
poly is an array of vertices of a convex pentagon;

Output : if pt(x,y) inside the pentagon then return 1,
else return 0;

Comment : procedure is as follows:

Consider a line passes through the given point
pt(x,y) and parallel to the x-axis. Let the line
cuts at j number of points to the edges of the
pentagon. Number of cut points to the right of
the given point pt(x,y) is rsol_count. If j = 0,
point pt(x,y) is outside of the pentagon. Value of
j will be atmost 2. If rsol_count is 1, then the
point inside the pentagon, otherwise outside of
the pentagon.
point_check_in_poly (pt.x, pt.y, poly)
k, rsol_count, sol_count : integer;
pt1, pt2, sol, sol1[2] : point;
Initialize rsol_count, sol_count to zero;
for all edges of the pentagon (i = 0 to 4) do {
 pt1 = poly[i];
k = (i + 1) mod 5;
 pt2 = poly[k];
 if (pt1.y == pt2.y) then go to end of the for_loop:
 /* edge of the pentagon parallel to the x_axis. */
 else
 if (pt1.x == pt2.x) then {
 /* edge of the pentagon perpendicular to the x_axis. */
 sol.x = pt1.x;
 sol.y = pt.y;
 }
 else {
 /* edge of the pentagon cuts the line which passes
 through the given point and parallel to the x_axis. */
 sol.y = pt.y;
 sol.x = pt1.x + ((pt2.x - pt1.x)*(sol.y - pt1.y)) / (pt2.y - pt1.y);
 }
}
d1 = distance (pt1, sol);
d2 = distance (pt2, sol);
d = distance (pt1, pt2);
if (|d - d1 - d2| is less then very small quantity) then
{
 /*
 * Line which passes through the given point &
 * parallel to the x.axis cuts internally to the
 * edge segment of the pentagon. */
 store sol to sol[i][sol_count];
 add 1 to sol_count;
 if (sol_count == 2) then go out of the for_loop;
 /* Since line which is parallel to x.axis & passes
 * through the given point cuts atmost two times to
 * the edges of the pentagon */
}
*/ end of forloop */
if (sol_count == 0) then return(0);
/* point is outside of the loop */
Calculate rsol_count, the number of cut points to the
right of the given point;
if (rsol_count == 1) then return(1);
/* point is inside the pentagon */
end_point_check_in_poly.
5.9 ALGORITHM Find_area

Algorithm for finding area of a convex polygon.

Input : arr - array of vertex(x, y) of a convex polygon
: v.count - no. of vertices of the polygon.
Output : area of a polygon.
Comment : Area of a convex polygon can be found by adding area of triangles which are formed by three points, centre & two consecutive vertices of the polygon.

find_area (arr, v.count)
int i, k;
Initialize centre.x = centre.y = 0;
sum = 0;
for all vertices (i = 0 to v.count - 1) do
{
 centre.x = centre.x + arr[i].x;
 centre.y = centre.y + arr[i].y;
}
centre.x = centre.x / v.count;
centre.y = centre.y / v.count;
for (i = 0 to v_count - 1) do
{
 point1 = arr[i]; k = (i + 1) mod v_count;
 point2 = arr[k];
 sum = sum + area_triangle (centre, point1, point2);
}
return (sum);
end_find_area.

5.10 RESULTS

Table - 2.1 and Fig - 2.1 in the last section shows the record of objects and geographical representation of objects. With the records shown in Table - 2.1 the results of the query are shown below:

Input lower bound of x for map space : -1
Input upper bound of x for map space : 70
Input lower bound of y for map space : -1
Input upper bound of y for map space : 70
RESULT OF INTERSECTION SEARCH:

Search type = i

QUERY REGION:
Lower bound of X = 12.00
Upper bound of X = 42.00
Lower bound of Y = 8.00
Upper bound of Y = 32.00

The object-name, vertices of the intersection between query rectangle and object, area of intersection are shown below:

a (12.0 11.0) (12.00 8.0) (14.0 8.0) Area = 3.000

b (25.0 27.0) (15.0 24.0) (12.0 22.8) (12.0 17.9)
 (15.0 17.0) (22.0 20.0) Area = 72.850

c (19.0 32.0) (12.0 32.0) (12.0 27.7) (16.0 29.0) Area = 19.167

d (32.0 15.0) (27.0 15.0) (23.0 11.0) (27.8 8.0)
 (33.0 8.0) (36.0 11.0) Area = 63.300

e (42.0 24.3) (40.0 27.0) (36.0 28.0) (39.0 18.0) (42.0 17.5)
 Area = 39.083

m (42.0 32.0) (38.5 32.0) (40.0 31.0) Area = 1.750
RESULT OF CONTAINMENT SEARCH:

Search type = c

QUERY REGION:

Lower bound of X = 10.00
Upper bound of X = 47.00
Lower bound of Y = 4.00
Upper bound of Y = 40.00

The object-name, vertices of the intersection between query rectangle and object, area of intersection are shown below:

c (21.0 34.0) (15.0 35.0) (10.0 33.0) (10.0 27.0)
 (16.0 29.0) Area = 51.500

d (23.0 11.0) (31.0 6.0) (36.0 11.0) (32.0 15.0)
 (27.0 15.0) Area = 68.500

e (39.0 18.0) (45.0 17.0) (43.0 23.0) (40.0 27.0)
 (36.0 28.0) Area = 51.000

m (37.0 33.0) (40.0 31.0) (42.0 32.0) (42.0 35.0)
 (39.0 37.0) Area = 19.000

45
Tables and Figures

Table - 1.1

Table showing the object name and its lower left-corner & upper right-corner vertices.

<table>
<thead>
<tr>
<th>object name</th>
<th>lower left-corner vertex</th>
<th>upper right-corner vertex</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.00 30.00</td>
<td>10.00 40.00</td>
</tr>
<tr>
<td>b</td>
<td>5.00 5.00</td>
<td>15.00 10.00</td>
</tr>
<tr>
<td>c</td>
<td>10.00 20.00</td>
<td>15.00 25.00</td>
</tr>
<tr>
<td>d</td>
<td>10.00 55.00</td>
<td>30.00 60.00</td>
</tr>
<tr>
<td>e</td>
<td>15.00 40.00</td>
<td>30.00 45.00</td>
</tr>
<tr>
<td>f</td>
<td>20.00 30.00</td>
<td>25.00 35.00</td>
</tr>
<tr>
<td>g</td>
<td>25.00 15.00</td>
<td>30.00 25.00</td>
</tr>
<tr>
<td>h</td>
<td>20.00 0.00</td>
<td>40.00 10.00</td>
</tr>
<tr>
<td>i</td>
<td>50.00 10.00</td>
<td>60.00 15.00</td>
</tr>
<tr>
<td>j</td>
<td>40.00 20.00</td>
<td>50.00 25.00</td>
</tr>
<tr>
<td>k</td>
<td>35.00 30.00</td>
<td>40.00 40.00</td>
</tr>
<tr>
<td>l</td>
<td>40.00 50.00</td>
<td>45.00 55.00</td>
</tr>
<tr>
<td>m</td>
<td>55.00 35.00</td>
<td>60.00 45.00</td>
</tr>
<tr>
<td>n</td>
<td>45.00 35.00</td>
<td>50.00 45.00</td>
</tr>
</tbody>
</table>

46
Table - 2.1

Table showing the object name and its vertices

<table>
<thead>
<tr>
<th>object</th>
<th></th>
<th></th>
<th>vertex</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>a</td>
<td>5.0</td>
<td>5.0</td>
<td>11.0</td>
<td>5.0</td>
<td>14.0</td>
</tr>
<tr>
<td>b</td>
<td>5.0</td>
<td>20.0</td>
<td>15.0</td>
<td>17.0</td>
<td>22.0</td>
</tr>
<tr>
<td>c</td>
<td>10.0</td>
<td>27.0</td>
<td>16.0</td>
<td>29.0</td>
<td>21.0</td>
</tr>
<tr>
<td>d</td>
<td>23.0</td>
<td>11.0</td>
<td>31.0</td>
<td>6.0</td>
<td>36.0</td>
</tr>
<tr>
<td>e</td>
<td>39.0</td>
<td>18.0</td>
<td>45.0</td>
<td>17.0</td>
<td>43.0</td>
</tr>
<tr>
<td>f</td>
<td>46.0</td>
<td>30.0</td>
<td>50.0</td>
<td>27.0</td>
<td>59.0</td>
</tr>
<tr>
<td>g</td>
<td>25.0</td>
<td>40.0</td>
<td>27.0</td>
<td>36.0</td>
<td>31.0</td>
</tr>
<tr>
<td>h</td>
<td>40.0</td>
<td>45.0</td>
<td>41.0</td>
<td>43.0</td>
<td>47.0</td>
</tr>
<tr>
<td>i</td>
<td>45.0</td>
<td>38.0</td>
<td>50.0</td>
<td>39.0</td>
<td>53.0</td>
</tr>
<tr>
<td>j</td>
<td>20.0</td>
<td>44.0</td>
<td>27.0</td>
<td>44.0</td>
<td>33.0</td>
</tr>
<tr>
<td>k</td>
<td>15.0</td>
<td>49.0</td>
<td>16.0</td>
<td>46.0</td>
<td>19.0</td>
</tr>
<tr>
<td>l</td>
<td>44.0</td>
<td>9.0</td>
<td>50.0</td>
<td>7.0</td>
<td>53.0</td>
</tr>
<tr>
<td>m</td>
<td>37.0</td>
<td>33.0</td>
<td>40.0</td>
<td>31.0</td>
<td>42.0</td>
</tr>
</tbody>
</table>
Query Rectangle for Intersection Search.

Query Rectangle for Containment Search.

Fig 1.1
Query Rectangle for Intersection Search
Query Rectangle for Containment Search
Fig. 2.1
7 REFERENCES

1. Efficient Query processing in Geographic Information Systems [Springer-Verlag, 1990, (Lecture Notes in Computer Science, V471)], By Beng Chin Ooi.