Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Problems and proofs in numbers and algebra / Richard Millman.

By: Contributor(s): Material type: TextTextPublication details: Cham : Springer, 2015.Description: x, 223 pages ; 24 cmISBN:
  • 9783319144269
Subject(s): DDC classification:
  • 512.7 23 M655
Contents:
I. The Integers 1. Number Concepts, Prime Numbers, and the Division Algorithm 2. Greatest Common Divisors, Diophantine Equations, and Combinatorics 3. Equivalence Classes with Applications to Clock Arithmetics and Fractions II. The Algebra of Polynomials and Linear Systems 4. Polynomials and the Division Algorithm 5. Factoring Polynomials, Their Roots, and Some Applications 6. Matrices and Systems of Linear Equations.
Summary: Designed to facilitate the transition from undergraduate calculus and differential equations to learning about proofs, this book helps students develop the rigorous mathematical reasoning needed for advanced courses in analysis, abstract algebra, and more. Students will focus on both how to prove theorems and solve problem sets in-depth; that is, where multiple steps are needed to prove or solve. This proof technique is developed by examining two specific content themes and their applications in-depth: number theory and algebra. This choice of content themes enables students to develop an understanding of proof technique in the context of topics with which they are already familiar, as well as reinforcing natural and conceptual understandings of mathematical methods and styles. The key to the text is its interesting and intriguing problems, exercises, theorems, and proofs, showing how students will transition from the usual, more routine calculus to abstraction while also learning how to prove or solve complex problems. This method of instruction is augmented by examining applications of number theory in systems such as RSA cryptography, Universal Product Code (UPC), and International Standard Book Number (ISBN). The numerous problems and examples included in each section reward curiosity and insightfulness over more simplistic approaches. Each problem set begins with a few easy problems, progressing to problems or proofs with multi-step solutions. Exercises in the text stay close to the examples of the section, allowing students the immediate opportunity to practice developing techniques.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Books ISI Library, Kolkata 512.7 M655 (Browse shelf(Opens below)) Available 137495
Total holds: 0

Includes bibliographical references.

I. The Integers
1. Number Concepts, Prime Numbers, and the Division Algorithm
2. Greatest Common Divisors, Diophantine Equations, and Combinatorics
3. Equivalence Classes with Applications to Clock Arithmetics and Fractions
II. The Algebra of Polynomials and Linear Systems
4. Polynomials and the Division Algorithm
5. Factoring Polynomials, Their Roots, and Some Applications 6. Matrices and Systems of Linear Equations.

Designed to facilitate the transition from undergraduate calculus and differential equations to learning about proofs, this book helps students develop the rigorous mathematical reasoning needed for advanced courses in analysis, abstract algebra, and more. Students will focus on both how to prove theorems and solve problem sets in-depth; that is, where multiple steps are needed to prove or solve. This proof technique is developed by examining two specific content themes and their applications in-depth: number theory and algebra. This choice of content themes enables students to develop an understanding of proof technique in the context of topics with which they are already familiar, as well as reinforcing natural and conceptual understandings of mathematical methods and styles. The key to the text is its interesting and intriguing problems, exercises, theorems, and proofs, showing how students will transition from the usual, more routine calculus to abstraction while also learning how to prove or solve complex problems. This method of instruction is augmented by examining applications of number theory in systems such as RSA cryptography, Universal Product Code (UPC), and International Standard Book Number (ISBN). The numerous problems and examples included in each section reward curiosity and insightfulness over more simplistic approaches. Each problem set begins with a few easy problems, progressing to problems or proofs with multi-step solutions. Exercises in the text stay close to the examples of the section, allowing students the immediate opportunity to practice developing techniques.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in