Applied regression analysis and generalized linear models / John Fox.
Material type:
- 9781452205663
- 000SA.06 23 F792
Item type | Current library | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|
Books | ISI Library, Kolkata | 000SA.06 F792 (Browse shelf(Opens below)) | Available | 137356 |
Includes bibliographical references and indexes.
1. Statistical models and social science --
2. What is regression analysis? --
3. Examining data --
4. Transforming data --
5. Linear least-squares regression --
6. Statistical inference for regression --
7. Dummy-variable regression --
8. Analysis of variance --
9. Statistical theory for linear models --
10. The vector geometry of linear models --
11. Unusual and influential data --
12. Diagnosing non-normality, nonconstrant error variance, and nonlinearity --
13. Collinearity and its purported remedies --
14. Logit and probit models for categorical response variables --
15. Generalized linear models --
16. Time-series regression and generalized least squares --
17. Nonlinear regression --
18. Nonparametric regression --
19. Robust regression --
20. Missing data in regression models --
21. Bootstrapping regression models --
22. Model selection, averaging, and validation --
23. Linear mixed-effects models for hierarchical and longitudinal data --
24. Generalized linear and nonlinear mixed-effects models --
Appendices.
Providing a modern treatment of regression analysis, linear models and closely related methods, this book introduces students to one of the most useful and widely used statistical tools for social research.
There are no comments on this title.