Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

An Introduction to Difference Equations [electronic resource] / by Saber Elaydi.

By: Contributor(s): Material type: TextTextSeries: Undergraduate Texts in MathematicsPublisher: New York, NY : Springer New York, 2005Edition: Third EditionDescription: XXII, 540 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780387276021
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 515.625 23
  • 515.75 23
LOC classification:
  • QA431
Online resources:
Contents:
Dynamics of First-Order Difference Equations -- Linear Difference Equations of Higher Order -- Systems of Linear Difference Equations -- Stability Theory -- Higher-Order Scalar Difference Equations -- The Z-Transform Method and Volterra Difference Equations -- Oscillation Theory -- Asymptotic Behavior of Difference Equations -- Applications to Continued Fractions and Orthogonal Polynomials -- Control Theory.
In: Springer eBooksSummary: The book integrates both classical and modern treatments of difference equations. It contains the most updated and comprehensive material, yet the presentation is simple enough for the book to be used by advanced undergraduate and beginning graduate students. This third edition includes more proofs, more graphs, and more applications. The author has also updated the contents by adding a new chapter on Higher Order Scalar Difference Equations, along with recent results on local and global stability of one-dimensional maps, a new section on the various notions of asymptoticity of solutions, a detailed proof of Levin-May Theorem, and the latest results on the LPA flour-beetle model. Saber Elaydi is Professor of Mathematics at Trinity University. He is also the author of Discrete Chaos (1999), and the Editor-In-Chief of the Journal of Difference Equations and Applications. About the Second Edition: The book is a valuable reference for anyone who models discrete systems. Dynamicists have the long-awaited discrete counterpart to standard textbooks such as Hirsch and Smale ('Differential Equations, Dynamical Systems, and Linear Algebra'). It is so well written and well designed, and the contents are so interesting to me, that I had a difficult time putting it down. - Shandelle Henson, Journal of Difference Equations and Applications Among the few introductory texts to difference equations this book is one of the very best ones. It has many features that the other texts don't have, e.g., stability theory, the Z-transform method (including a study of Volterra systems), and asymptotic behavior of solutions of difference equations (including Levinson's lemma) are studied extensively. It also contains very nice examples that primarily arise in applications in a variety of disciplines, including neural networks, feedback control, biology, Markov chains, economics, and heat transfer... -Martin Bohner, University of Missouri, Rolla.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
E-BOOKS ISI Library, Kolkata Not for loan EB1150
Total holds: 0

Dynamics of First-Order Difference Equations -- Linear Difference Equations of Higher Order -- Systems of Linear Difference Equations -- Stability Theory -- Higher-Order Scalar Difference Equations -- The Z-Transform Method and Volterra Difference Equations -- Oscillation Theory -- Asymptotic Behavior of Difference Equations -- Applications to Continued Fractions and Orthogonal Polynomials -- Control Theory.

The book integrates both classical and modern treatments of difference equations. It contains the most updated and comprehensive material, yet the presentation is simple enough for the book to be used by advanced undergraduate and beginning graduate students. This third edition includes more proofs, more graphs, and more applications. The author has also updated the contents by adding a new chapter on Higher Order Scalar Difference Equations, along with recent results on local and global stability of one-dimensional maps, a new section on the various notions of asymptoticity of solutions, a detailed proof of Levin-May Theorem, and the latest results on the LPA flour-beetle model. Saber Elaydi is Professor of Mathematics at Trinity University. He is also the author of Discrete Chaos (1999), and the Editor-In-Chief of the Journal of Difference Equations and Applications. About the Second Edition: The book is a valuable reference for anyone who models discrete systems. Dynamicists have the long-awaited discrete counterpart to standard textbooks such as Hirsch and Smale ('Differential Equations, Dynamical Systems, and Linear Algebra'). It is so well written and well designed, and the contents are so interesting to me, that I had a difficult time putting it down. - Shandelle Henson, Journal of Difference Equations and Applications Among the few introductory texts to difference equations this book is one of the very best ones. It has many features that the other texts don't have, e.g., stability theory, the Z-transform method (including a study of Volterra systems), and asymptotic behavior of solutions of difference equations (including Levinson's lemma) are studied extensively. It also contains very nice examples that primarily arise in applications in a variety of disciplines, including neural networks, feedback control, biology, Markov chains, economics, and heat transfer... -Martin Bohner, University of Missouri, Rolla.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in