Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

The Analysis of Linear Partial Differential Operators II [electronic resource] : Differential Operators with Constant Coefficients / by Lars Hörmander.

By: Contributor(s): Material type: TextTextSeries: Classics in MathematicsPublisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005Description: XI, 395 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540269649
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 515.353 23
LOC classification:
  • QA370-380
Online resources: In: Springer eBooksSummary: This volume is an expanded version of Chapters III, IV, V and VII of my 1963 book "Linear partial differential operators". In addition there is an entirely new chapter on convolution equations, one on scattering theory, and one on methods from the theory of analytic functions of several complex variables. The latter is somewhat limited in scope though since it seems superfluous to duplicate the monographs by Ehrenpreis and by Palamodov on this subject. The reader is assumed to be familiar with distribution theory as presented in Volume I. Most topics discussed here have in fact been encountered in Volume I in special cases, which should provide the necessary motivation and background for a more systematic and precise exposition. The main technical tool in this volume is the Fourier- Laplace transformation. More powerful methods for the study of operators with variable coefficients will be developed in Volume III. However, constant coefficient theory has given the guidance for all that work. Although the field is no longer very active - perhaps because of its advanced state of development - and although it is possible to pass directly from Volume I to Volume III, the material presented here should not be neglected by the serious student who wants to gain a balanced perspective of the theory of linear partial differen­tial equations.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
E-BOOKS ISI Library, Kolkata Not for loan EB1175
Total holds: 0

This volume is an expanded version of Chapters III, IV, V and VII of my 1963 book "Linear partial differential operators". In addition there is an entirely new chapter on convolution equations, one on scattering theory, and one on methods from the theory of analytic functions of several complex variables. The latter is somewhat limited in scope though since it seems superfluous to duplicate the monographs by Ehrenpreis and by Palamodov on this subject. The reader is assumed to be familiar with distribution theory as presented in Volume I. Most topics discussed here have in fact been encountered in Volume I in special cases, which should provide the necessary motivation and background for a more systematic and precise exposition. The main technical tool in this volume is the Fourier- Laplace transformation. More powerful methods for the study of operators with variable coefficients will be developed in Volume III. However, constant coefficient theory has given the guidance for all that work. Although the field is no longer very active - perhaps because of its advanced state of development - and although it is possible to pass directly from Volume I to Volume III, the material presented here should not be neglected by the serious student who wants to gain a balanced perspective of the theory of linear partial differen­tial equations.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in