Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Amazon cover image
Image from Amazon.com

The Generic Chaining [electronic resource] : Upper and Lower Bounds of Stochastic Processes / by Michel Talagrand.

By: Contributor(s): Material type: TextTextSeries: Springer Monographs in MathematicsPublisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005Description: VIII, 222 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540274995
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 519.2 23
LOC classification:
  • QA273.A1-274.9
  • QA274-274.9
Online resources:
Contents:
Overview and Basic Facts -- Gaussian Processes and Related Structures -- Matching Theorems -- The Bernoulli Conjecture -- Families of distances -- Applications to Banach Space Theory.
In: Springer eBooksSummary: Author's Note: The material of this book has been reworked and expanded with a lot more details and published in the author's 2014 book "Upper and Lower Bounds for Stochastic Processes" (Ergebnisse Vol. 60, ISBN 978-3-642-54074-5). This book is much easier to read and covers everything that is in "The Generic Chaining" book in a more detailed and comprehensible way. ************ What is the maximum level a certain river is likely to reach over the next 25 years? (Having experienced three times a few feet of water in my house, I feel a keen personal interest in this question. ) There are many questions of the same nature: what is the likely magnitude of the strongest earthquake to occur during the life of a planned building, or the speed of the strongest wind a suspension bridge will have to stand? All these situations can be modeled in the same manner. The value X of the quantity of interest (be it water t level or speed of wind) at time t is a random variable. What can be said about the maximum value of X over a certain range of t? t A collection of random variables (X ), where t belongs to a certain index t set T, is called a stochastic process, and the topic of this book is the study of the supremum of certain stochastic processes, and more precisely to ?nd upper and lower bounds for the quantity EsupX . (0. 1) t t?T Since T might be uncountable, some care has to be taken to de?ne this quantity. For any reasonable de?nition of Esup X we have t t?T EsupX =sup{EsupX ; F?T,F ?nite} , (0. 2) t t t?T t?F an equality that we will take as the de?nition of the quantity Esup X . t t?T Thus, the crucial case for the estimation of the quantity (0.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
E-BOOKS ISI Library, Kolkata Not for loan EB1194
Total holds: 0

Overview and Basic Facts -- Gaussian Processes and Related Structures -- Matching Theorems -- The Bernoulli Conjecture -- Families of distances -- Applications to Banach Space Theory.

Author's Note: The material of this book has been reworked and expanded with a lot more details and published in the author's 2014 book "Upper and Lower Bounds for Stochastic Processes" (Ergebnisse Vol. 60, ISBN 978-3-642-54074-5). This book is much easier to read and covers everything that is in "The Generic Chaining" book in a more detailed and comprehensible way. ************ What is the maximum level a certain river is likely to reach over the next 25 years? (Having experienced three times a few feet of water in my house, I feel a keen personal interest in this question. ) There are many questions of the same nature: what is the likely magnitude of the strongest earthquake to occur during the life of a planned building, or the speed of the strongest wind a suspension bridge will have to stand? All these situations can be modeled in the same manner. The value X of the quantity of interest (be it water t level or speed of wind) at time t is a random variable. What can be said about the maximum value of X over a certain range of t? t A collection of random variables (X ), where t belongs to a certain index t set T, is called a stochastic process, and the topic of this book is the study of the supremum of certain stochastic processes, and more precisely to ?nd upper and lower bounds for the quantity EsupX . (0. 1) t t?T Since T might be uncountable, some care has to be taken to de?ne this quantity. For any reasonable de?nition of Esup X we have t t?T EsupX =sup{EsupX ; F?T,F ?nite} , (0. 2) t t t?T t?F an equality that we will take as the de?nition of the quantity Esup X . t t?T Thus, the crucial case for the estimation of the quantity (0.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in