Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Differential Geometry and Analysis on CR Manifolds [electronic resource] / by Sorin Dragomir, Giuseppe Tomassini.

By: Contributor(s): Material type: TextTextSeries: Progress in Mathematics ; 246Publisher: Boston, MA : Birkhäuser Boston, 2006Description: XVI, 488 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780817644833
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 516.36 23
LOC classification:
  • QA641-670
Online resources:
Contents:
CR Manifolds -- The Fefferman Metric -- The CR Yamabe Problem -- Pseudoharmonic Maps -- Pseudo-Einsteinian Manifolds -- Pseudo-Hermitian Immersions -- Quasiconformal Mappings -- Yang-Mills Fields on CR Manifolds -- Spectral Geometry.
In: Springer eBooksSummary: The study of CR manifolds lies at the intersection of three main mathematical disciplines: partial differential equations, complex analysis in several complex variables, and differential geometry. While the PDE and complex analytic aspects have been intensely studied in the last fifty years, much effort has recently been made to understand the differential geometric side of the subject. This monograph provides a unified presentation of several differential geometric aspects in the theory of CR manifolds and tangential Cauchy–Riemann equations. It presents the major differential geometric acheivements in the theory of CR manifolds, such as the Tanaka–Webster connection, Fefferman's metric, pseudo-Einstein structures and the Lee conjecture, CR immersions, subelliptic harmonic maps as a local manifestation of pseudoharmonic maps from a CR manifold, Yang–Mills fields on CR manifolds, to name a few. It also aims at explaining how certain results from analysis are employed in CR geometry. Motivated by clear exposition, many examples, explicitly worked-out geometric results, and stimulating unproved statements and comments referring to the most recent aspects of the theory, this monograph is suitable for researchers and graduate students in differential geometry, complex analysis, and PDEs.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

CR Manifolds -- The Fefferman Metric -- The CR Yamabe Problem -- Pseudoharmonic Maps -- Pseudo-Einsteinian Manifolds -- Pseudo-Hermitian Immersions -- Quasiconformal Mappings -- Yang-Mills Fields on CR Manifolds -- Spectral Geometry.

The study of CR manifolds lies at the intersection of three main mathematical disciplines: partial differential equations, complex analysis in several complex variables, and differential geometry. While the PDE and complex analytic aspects have been intensely studied in the last fifty years, much effort has recently been made to understand the differential geometric side of the subject. This monograph provides a unified presentation of several differential geometric aspects in the theory of CR manifolds and tangential Cauchy–Riemann equations. It presents the major differential geometric acheivements in the theory of CR manifolds, such as the Tanaka–Webster connection, Fefferman's metric, pseudo-Einstein structures and the Lee conjecture, CR immersions, subelliptic harmonic maps as a local manifestation of pseudoharmonic maps from a CR manifold, Yang–Mills fields on CR manifolds, to name a few. It also aims at explaining how certain results from analysis are employed in CR geometry. Motivated by clear exposition, many examples, explicitly worked-out geometric results, and stimulating unproved statements and comments referring to the most recent aspects of the theory, this monograph is suitable for researchers and graduate students in differential geometry, complex analysis, and PDEs.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in