Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Nonlinear Oscillations of Hamiltonian PDEs [electronic resource] / by Massimiliano Berti.

By: Contributor(s): Material type: TextTextSeries: Progress in Nonlinear Differential Equations and Their Applications ; 74Publisher: Boston, MA : Birkhäuser Boston, 2007Description: XIV, 180 p. 10 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780817646813
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 515.353 23
LOC classification:
  • QA370-380
Online resources:
Contents:
Finite Dimension -- Infinite Dimension -- A Tutorial in Nash–Moser Theory -- Application to the Nonlinear Wave Equation -- Forced Vibrations.
In: Springer eBooksSummary: Many partial differential equations (PDEs) that arise in physics can be viewed as infinite-dimensional Hamiltonian systems. This monograph presents recent existence results of nonlinear oscillations of Hamiltonian PDEs, particularly of periodic solutions for completely resonant nonlinear wave equations. After introducing the reader to classical finite-dimensional dynamical system theory, including the Weinstein–Moser and Fadell–Rabinowitz resonant center theorems, the author develops the analogous theory for completely resonant nonlinear wave equations. Within this theory, both problems of small divisors and infinite bifurcation phenomena occur, requiring the use of Nash–Moser theory as well as minimax variational methods. These techniques are presented in a self-contained manner together with other basic notions of Hamiltonian PDEs and number theory. This text serves as an introduction to research in this fascinating and rapidly growing field. Graduate students and researchers interested in nonlinear variational techniques as well in small divisors problems applied to Hamiltonian PDEs will find inspiration in the book.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Finite Dimension -- Infinite Dimension -- A Tutorial in Nash–Moser Theory -- Application to the Nonlinear Wave Equation -- Forced Vibrations.

Many partial differential equations (PDEs) that arise in physics can be viewed as infinite-dimensional Hamiltonian systems. This monograph presents recent existence results of nonlinear oscillations of Hamiltonian PDEs, particularly of periodic solutions for completely resonant nonlinear wave equations. After introducing the reader to classical finite-dimensional dynamical system theory, including the Weinstein–Moser and Fadell–Rabinowitz resonant center theorems, the author develops the analogous theory for completely resonant nonlinear wave equations. Within this theory, both problems of small divisors and infinite bifurcation phenomena occur, requiring the use of Nash–Moser theory as well as minimax variational methods. These techniques are presented in a self-contained manner together with other basic notions of Hamiltonian PDEs and number theory. This text serves as an introduction to research in this fascinating and rapidly growing field. Graduate students and researchers interested in nonlinear variational techniques as well in small divisors problems applied to Hamiltonian PDEs will find inspiration in the book.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in