Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Introduction to Hamiltonian Dynamical Systems and the N-Body Problem [electronic resource] / by Kenneth Meyer, Glen Hall, Dan Offin.

By: Contributor(s): Material type: TextTextSeries: Applied Mathematical Sciences ; 90Publisher: New York, NY : Springer New York, 2009Description: XIII, 399 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780387097244
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 515.39 23
  • 515.48 23
LOC classification:
  • QA313
Online resources:
Contents:
Hamiltonian Systems -- Equations of Celestial Mechanics -- Linear Hamiltonian Systems -- Topics in Linear Theory -- Exterior Algebra and Differential Forms -- Symplectic Transformations -- Special Coordinates -- Geometric Theory -- Continuation of Solutions -- Normal Forms -- Bifurcations of Periodic Orbits -- Variational Techniques -- Stability and KAM Theory -- Twist Maps and Invariant Circle.
In: Springer eBooksSummary: This text grew out of graduate level courses in mathematics, engineering and physics given at several universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. Topics covered include a detailed discussion of linear Hamiltonian systems, an introduction to variational calculus and the Maslov index, the basics of the symplectic group, an introduction to reduction, applications of Poincaré's continuation to periodic solutions, the use of normal forms, applications of fixed point theorems and KAM theory. There is a special chapter devoted to finding symmetric periodic solutions by calculus of variations methods. The main examples treated in this text are the N-body problem and various specialized problems like the restricted three-body problem. The theory of the N-body problem is used to illustrate the general theory. Some of the topics covered are the classical integrals and reduction, central configurations, the existence of periodic solutions by continuation and variational methods, stability and instability of the Lagrange triangular point. Ken Meyer is an emeritus professor at the University of Cincinnati, Glen Hall is an associate professor at Boston University, and Dan Offin is a professor at Queen's University.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
E-BOOKS ISI Library, Kolkata Not for loan EB1559
Total holds: 0

Hamiltonian Systems -- Equations of Celestial Mechanics -- Linear Hamiltonian Systems -- Topics in Linear Theory -- Exterior Algebra and Differential Forms -- Symplectic Transformations -- Special Coordinates -- Geometric Theory -- Continuation of Solutions -- Normal Forms -- Bifurcations of Periodic Orbits -- Variational Techniques -- Stability and KAM Theory -- Twist Maps and Invariant Circle.

This text grew out of graduate level courses in mathematics, engineering and physics given at several universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. Topics covered include a detailed discussion of linear Hamiltonian systems, an introduction to variational calculus and the Maslov index, the basics of the symplectic group, an introduction to reduction, applications of Poincaré's continuation to periodic solutions, the use of normal forms, applications of fixed point theorems and KAM theory. There is a special chapter devoted to finding symmetric periodic solutions by calculus of variations methods. The main examples treated in this text are the N-body problem and various specialized problems like the restricted three-body problem. The theory of the N-body problem is used to illustrate the general theory. Some of the topics covered are the classical integrals and reduction, central configurations, the existence of periodic solutions by continuation and variational methods, stability and instability of the Lagrange triangular point. Ken Meyer is an emeritus professor at the University of Cincinnati, Glen Hall is an associate professor at Boston University, and Dan Offin is a professor at Queen's University.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in