Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Numerical Methods and Analysis of Multiscale Problems [electronic resource] / by Alexandre L. Madureira.

By: Contributor(s): Material type: TextTextSeries: SpringerBriefs in MathematicsPublisher: Cham : Springer International Publishing : Imprint: Springer, 2017Description: X, 123 p. 31 illus., 9 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319508665
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 518 23
LOC classification:
  • QA297-299.4
Online resources:
Contents:
Introductory Material and Finite Element Methods -- A One-dimensional Singular Perturbed Problem -- An Application in Neuroscience: Heterogeneous Cable Equation -- Two-Dimensional Reaction-Diffusion Equations -- Modeling PDEs in Domains with Rough Boundaries -- Partial Differential Equations with Oscillatory Coefficients.
In: Springer eBooksSummary: This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Introductory Material and Finite Element Methods -- A One-dimensional Singular Perturbed Problem -- An Application in Neuroscience: Heterogeneous Cable Equation -- Two-Dimensional Reaction-Diffusion Equations -- Modeling PDEs in Domains with Rough Boundaries -- Partial Differential Equations with Oscillatory Coefficients.

This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in