Intoductory quantum mechanics: a traditional approach emphasizing connections with classical physics/ Paul R. Berman
Series: Unitext for PhysicsPublication details: Switzerland: Springer, 2018Description: xvi, 637 pages, 24 cmISBN:- 9783319685960
- 23 530.12 B516
Item type | Current library | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|
Books | ISI Library, Kolkata | 530.12 B516 (Browse shelf(Opens below)) | Available | 138482 |
Includes index
Introduction -- Mathematical Preliminaries -- Free-Particle Schrödinger Equation: Wave Packets -- Schrödinger’s Equation with Potential Energy: Introduction to Operators -- Postulates and Basic Elements of Quantum Mechanics: Properties of Operators -- Problems in One-Dimension: General Considerations, Infinite Well Potential, Piecewise Constant Potentials, and Delta Function Potentials -- Simple Harmonic Oscillator: One Dimension -- Problems in Two and Three-Dimensions: General Considerations -- Central Forces and Angular Momentum -- Spherically Symmetric Potentials: Radial Equation -- Dirac Notation -- Spin -- (A) Review of Basic Concepts (B) Feynman Path Integral Approach (C) Bell’s Inequalities Revisited -- Perturbation Theory -- Variational Approach -- WKB Approximation -- Scattering: 1-D -- Scattering: 3-D -- Symmetry and Transformations: Rotation Matrices -- Addition of Angular Momenta, Clebsch-Gordan Coefficients, Vector and Tensor Operators, Wigner-Eckart Theorem -- Hydrogen Atom with Spin in External Fields -- Time-Dependent Problems -- Approximation Techniques in Time-Dependent Problems --Decay of a Discrete State into a Continuum of States: Fermi’s Golden Rule -- Index
This book presents a basic introduction to quantum mechanics. Depending on the choice of topics, it can be used for a one-semester or two-semester course. An attempt has been made to anticipate the conceptual problems students encounter when they first study quantum mechanics. Wherever possible, examples are given to illustrate the underlying physics associated with the mathematical equations of quantum mechanics. To this end, connections are made with corresponding phenomena in classical mechanics and electromagnetism. The problems at the end of each chapter are intended to help students master the course material and to explore more advanced topics. Many calculations exploit the extraordinary capabilities of computer programs such as Mathematica, MatLab, and Maple. Students are urged to use these programs, just as they had been urged to use calculators in the past. The treatment of various topics is rather complete, in that most steps in derivations are included. Several of the chapters go beyond what is traditionally covered in an introductory course. The goal of the presentation is to provide the students with a solid background in quantum mechanics.
There are no comments on this title.