Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Embedding problems for the ´etale fundamental group of curves/ Poulami Mandal

By: Material type: TextTextPublication details: Bangalore: Indian Statistical Institute, 2024Description: vii, 63 pagesSubject(s): DDC classification:
  • 23 516.35  P874
Online resources:
Contents:
Preliminaries -- Motivation and main problems -- Proofs of the main results
Production credits:
  • Guided by Prof. Manish Kumar
Dissertation note: Thesis (Ph.D.)- Indian statistical Institute, 2024 Summary: Let X be a smooth projective curve over an algebraically closed field k of char- acteristic p > 0, S be a finite subset of closed points in X. Given an embedding problem (β : Γ ↠ G, α : π´et 1 (X \S) ↠ G) for the ´etale fundamental group π´et 1 (X \S), where H = ker(β) is prime-to-p, we discuss when an H-cover W → V of the G- cover V → X corresponding to α is a proper solution. When H is abelian and G is a p-group, some necessary and sufficient conditions for solving the embedding prob- lems are given in terms of the action of G on a certain generalization of Pic0(V )[m], the m-torsion of the Picard group. When a solution exists, we discuss the problem of finding the number of (non-equivalent) solutions and the minimum of genera of the covers corresponding to proper solutions for the given embedding problem.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Notes Date due Barcode Item holds
THESIS ISI Library, Kolkata 516.35 P874 (Browse shelf(Opens below)) Available E-Thesis TH603
Total holds: 0

Thesis (Ph.D.)- Indian statistical Institute, 2024

Includes bibliography

Preliminaries -- Motivation and main problems -- Proofs of the main results

Guided by Prof. Manish Kumar

Let X be a smooth projective curve over an algebraically closed field k of char- acteristic p > 0, S be a finite subset of closed points in X. Given an embedding problem (β : Γ ↠ G, α : π´et 1 (X \S) ↠ G) for the ´etale fundamental group π´et 1 (X \S), where H = ker(β) is prime-to-p, we discuss when an H-cover W → V of the G- cover V → X corresponding to α is a proper solution. When H is abelian and G is a p-group, some necessary and sufficient conditions for solving the embedding prob- lems are given in terms of the action of G on a certain generalization of Pic0(V )[m], the m-torsion of the Picard group. When a solution exists, we discuss the problem of finding the number of (non-equivalent) solutions and the minimum of genera of the covers corresponding to proper solutions for the given embedding problem.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in