Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

A1-homotopy types of A2 and A2 \ {(0, 0)}/ Biman Roy

By: Material type: TextTextPublication details: Kolkata: Indian Statistical Institute, 2024Description: vii, 114 pagesSubject(s): DDC classification:
  • 23rd 514.24  R888
Online resources:
Contents:
Introduction -- A1-homotopy theory: An Introduction -- A1-invariance of πA1/ 0 (−) -- Birational Connected Components -- Existence of A1 and A1-Connectedness of a Surface -- A1-homotopy theory and log-uniruledness -- Kan Fibrant Property of Sing∗(X)(−) -- Characterisation of the Affine Space -- A1-homotopy type of A2 \ {(0, 0)} -- Regular Functions on S(X) -- Naive 0-th A1-homology --
Production credits:
  • Guided by Prof. Utsav Choudhury
Dissertation note: Thesis (Ph.D) - Indian Statistical Institute, 2024 Summary: Morel-Voevodsky developed A^1-homotopy theory which is a bridge between algebraic geometry and algebraic topology. In this thesis we study the A^1-connected component of a smooth variety in great detail. We have shown that the A^1-connected component of a smooth variety contains the information about the existence of affine lines in the variety. Using this and Miyanishi-Sugie's algebraic characterisation, we determine that the affine plane is the only A^1-contractible smooth affine surface over the field of characteristic zero. In the other part of the thesis, we studied the A^1-homotopy type of A^2-{(0,0)}. We showed that over the field of characteristic zero, if an open subvariety of a smooth affine surface is A^1-weakly equivalent to A^2-{(0,0)}, then it is isomorphic to A^2-{(0,0)}.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Notes Date due Barcode Item holds
THESIS ISI Library, Kolkata 514.24 R888 (Browse shelf(Opens below)) Available E-Thesis. Guided by Prof. Utsav Choudhury TH617
Total holds: 0

Thesis (Ph.D) - Indian Statistical Institute, 2024

Includes bibliography

Introduction -- A1-homotopy theory: An Introduction -- A1-invariance of πA1/ 0 (−) -- Birational Connected Components -- Existence of A1 and A1-Connectedness of a Surface -- A1-homotopy theory and log-uniruledness -- Kan Fibrant Property of Sing∗(X)(−) -- Characterisation of the Affine Space -- A1-homotopy type of A2 \ {(0, 0)} -- Regular Functions on S(X) -- Naive 0-th A1-homology --

Guided by Prof. Utsav Choudhury

Morel-Voevodsky developed A^1-homotopy theory which is a bridge between algebraic geometry and algebraic topology. In this thesis we study the A^1-connected component of a smooth variety in great detail. We have shown that the A^1-connected component of a smooth variety contains the information about the existence of affine lines in the variety. Using this and Miyanishi-Sugie's algebraic characterisation, we determine that the affine plane is the only A^1-contractible smooth affine surface over the field of characteristic zero. In the other part of the thesis, we studied the A^1-homotopy type of A^2-{(0,0)}. We showed that over the field of characteristic zero, if an open subvariety of a smooth affine surface is A^1-weakly equivalent to A^2-{(0,0)}, then it is isomorphic to A^2-{(0,0)}.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in