512.7
Exploring the Riemann Zeta Function 190 years from Riemann's Birth / edited by Hugh Montgomery, Ashkan Nikeghbali, Michael Th. Rassias. -
X, 298 p. 7 illus., 5 illus. in color. online resource.
Content notes : Preface (Dyson) -- 1. An introduction to Riemann's life, his mathematics, and his work on the zeta function (R. Baker) -- 2. Ramanujan's formula for zeta (2n+1) (B.C. Berndt, A. Straub) -- 3. Towards a fractal cohomology: Spectra of Polya-Hilbert operators, regularized determinants, and Riemann zeros (T. Cobler, M.L. Lapidus) -- The Temptation of the Exceptional Characters (J.B. Friedlander, H. Iwaniec) -- 4. The Temptation of the Exceptional Characters (J.B. Friedlander, H. Iwaniec) -- 5. Arthur's truncated Eisenstein series for SL(2,Z) and the Riemann Zeta Function, A Survey (D. Goldfield) -- 6. On a Cubic moment of Hardy's function with a shift (A. Ivic) -- 7. Some analogues of pair correlation of Zeta Zeros (Y. Karabulut, C.Y. Yıldırım) -- 8. Bagchi's Theorem for families of automorphic forms (E. Kowalski) -- 9. The Liouville function and the Riemann hypothesis (M.J. Mossinghoff, T.S. Trudgian) -- 10. Explorations in the theory of partition zeta functions (K. Ono, L. Rolen, R. Schneider) -- 11. Reading Riemann (S.J. Patterson) -- 12. A Taniyama product for the Riemann zeta function (D.E. Rohrlichłł).
9783319599694
* Number theory. Geometry, algebraic. Functions of complex variables. Differentiable dynamical systems. Functional equations. Harmonic analysis. Number Theory. Algebraic Geometry. Functions of a Complex Variable. Dynamical Systems and Ergodic Theory. Difference and Functional Equations. Abstract Harmonic Analysis.
* Montgomery, Hugh., edt, http://id.loc.gov/vocabulary/relators/edt Nikeghbali, Ashkan., edt, http://id.loc.gov/vocabulary/relators/edtRassias, Michael Th., edt, http://id.loc.gov/vocabulary/relators/edt
* Title