An Atlas of Functions (Record no. 426199)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 06773nam a22005415i 4500 |
020 ## - INTERNATIONAL STANDARD BOOKNUMBER | |
International Standard Book Number | 9780387488073 |
-- | 978-0-387-48807-3 |
024 7# - | |
-- | 10.1007/978-0-387-48807-3 |
-- | doi |
040 ## - | |
-- | ISI Library, Kolkata |
050 #4 - | |
-- | T57-57.97 |
072 #7 - | |
-- | PBW |
-- | bicssc |
072 #7 - | |
-- | MAT003000 |
-- | bisacsh |
072 #7 - | |
-- | PBW |
-- | thema |
082 04 - DEWEYDECIMAL CLASSIFICATION NUMBER | |
Classification number | 519 |
Edition number | 23 |
100 1# - MAIN ENTRY--PERSONAL NAME | |
Personal name | Oldham, Keit. |
Relator code | aut |
-- | http://id.loc.gov/vocabulary/relators/aut |
245 13 - TITLE STATEMENT | |
Title | An Atlas of Functions |
Medium | [electronic resource] : |
Remainder of title | with Equator, the Atlas Function Calculator / |
Statement of responsibility, etc | by Keit Oldham, Jan Myland, Jerome Spanier. |
942 ## - ADDED ENTRY ELEMENTS(KOHA) | |
Koha item type | E-BOOKS |
100 1# - MAIN ENTRY--PERSONAL NAME | |
-- | author. |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE STATEMENTS | |
Place of production, publication, distribution, manufacture | New York, NY : |
Name of producer, publisher, distributor, manufacturer | Springer New York, |
Date of production, publication, distribution, manufacture | 2009. |
300 ## - | |
-- | XI, 750 p. |
-- | online resource. |
336 ## - CONTENT TYPE | |
Content Type Term | text |
Content Type Code | txt |
Source | rdacontent |
337 ## - MEDIA TYPE | |
Media Type Term | computer |
Media Type Code | c |
Source | rdamedia |
338 ## - CARRIER TYPE | |
Carrier Type Term | online resource |
Carrier Type Code | cr |
Source | rdacarrier |
347 ## - | |
-- | text file |
-- | |
-- | rda |
505 0# - | |
-- | General Considerations -- The Constant Function c -- The Factorial Function n! -- The Zeta Numbers and Related Functions -- The Bernoulli Numbers B n -- The Euler Numbers E n -- The Binomial Coefficients -- The Linear Function bx + c and Its Reciprocal -- Modifying Functions -- The Heaviside u(x?a) And Dirac ?(x?a) Functions -- The Integer Powers x n And (bx+c) n -- The Square-Root Function and Its Reciprocal -- The Noninteger Powers x v -- The Semielliptic Function and Its Reciprocal -- The Semihyperbolic Functions And Their Reciprocals -- The Quadratic Function ax 2+bx+c and Its Reciprocal -- The Cubic Function x 3 + ax 2 + bx + c -- Polynomial Functions -- The Pochhammer Polynomials (x) n -- The Bernoulli Polynomials B n (x) -- The Euler Polynomials E n (x) -- The Legendre Polynomials P n (x) -- The Chebyshev Polynomials T n (x) and U n (x) -- The Laguerre Polynomials L n (x) -- The Hermite Polynomials H n (x) -- The Logarithmic Function ln(x) -- The Exponential Function exp(±x) -- Exponentials of Powers exp(± x v ) -- The Hyperbolic Cosine Cosh(x) and Sine Sinh(x) Functions -- The Hyperbolic Secant Sech(x) and Cosecant Csch(x) Functions -- The Hyperbolic Tangent tanh(x) and Cotangent coth(x) Functions -- The Inverse Hyperbolic Functions -- The Cosine cos(x) and Sine sin(x) Functions -- The Secant sec(x) And cosecant csc(x) Functions -- The Tangent tan(x) and Cotangent cot(x) Functions -- The Inverse Circular Functions -- Periodic Functions -- The Exponential Integrals Ei(x) and Ein(x) -- Sine and Cosine Integrals -- The Fresnel Integrals C(x) and S(x) -- The Error Function erf(x) and Its Complement erfc(x) -- The and Related Functions -- Dawson’s Integral daw(x) -- The Gamma Function ?(v) -- The Digamma Function ?(v) -- The Incomplete Gamma Functions -- The Parabolic Cylinder Function D v (x) -- The Kummer Function M(a,c,x) -- The Tricomi Function U(a,c,x) -- The Modified Bessel Functions I n (x) of Integer Order -- The Modified Bessel Function I v (x) of Arbitrary Order -- The Macdonald Function K v (x) -- The Bessel Functions J n (x) of Integer Order -- The Bessel Function J v (x) of Arbitrary Order -- The Neumann Function Y v (x) -- The Kelvin Functions -- The Airy Functions Ai(x) and Bi(x) -- The Struve Function h v (x) -- The Incomplete Beta Function B(v,?,x) -- The Legendre Functions P v (x) and Q v (x) -- The Gauss Hypergeometric Function F(a,b,c,x) -- The Complete Elliptic Integrals K(k) and E(k) -- The Incomplete Elliptic Integrals F(k,?) AND E(k,?) -- The Jacobian Elliptic Functions -- The Hurwitz Function ?(v, u). |
520 ## - | |
-- | This second edition of An Atlas of Functions, with Equator, the Atlas Function Calculator, provides comprehensive information on several hundred functions or function families of interest to scientists, engineers and mathematicians who are concerned with the quantitative aspects of their field. Beginning with simple integer-valued functions, the book progresses to polynomials, exponential, trigonometric, Bessel, and hypergeometric functions, and many more. The 65 chapters are arranged roughly in order of increasing complexity, mathematical sophistication being kept to a minimum while stressing utility throughout. In addition to providing definitions and simple properties for every function, each chapter catalogs more complex interrelationships as well as the derivatives, integrals, Laplace transforms and other characteristics of the function. Numerous color figures in two- or three- dimensions depict their shape and qualitative features and flesh out the reader’s familiarity with the functions. In many instances, the chapter concludes with a concise exposition on a topic in applied mathematics associated with the particular function or function family. Features that make the Atlas an invaluable reference tool, yet simple to use, include: full coverage of those functions—elementary and "special”—that meet everyday needs a standardized chapter format, making it easy to locate needed information on such aspects as: nomenclature, general behavior, definitions, intrarelationships, expansions, approximations, limits, and response to operations of the calculus extensive cross-referencing and comprehensive indexing, with useful appendices the inclusion of innovative software--Equator, the Atlas Function Calculator the inclusion of new material dealing with interesting applications of many of the function families, building upon the favorable responses to similar material in the first edition. |
650 #0 - | |
-- | Mathematics. |
650 #0 - | |
-- | Functions, special. |
650 #0 - | |
-- | Engineering. |
650 14 - | |
-- | Applications of Mathematics. |
-- | http://scigraph.springernature.com/things/product-market-codes/M13003 |
650 24 - | |
-- | Special Functions. |
-- | http://scigraph.springernature.com/things/product-market-codes/M1221X |
650 24 - | |
-- | Real Functions. |
-- | http://scigraph.springernature.com/things/product-market-codes/M12171 |
650 24 - | |
-- | Theoretical, Mathematical and Computational Physics. |
-- | http://scigraph.springernature.com/things/product-market-codes/P19005 |
650 24 - | |
-- | Computational Intelligence. |
-- | http://scigraph.springernature.com/things/product-market-codes/T11014 |
700 1# - | |
-- | Myland, Jan. |
-- | author. |
-- | aut |
-- | http://id.loc.gov/vocabulary/relators/aut |
700 1# - | |
-- | Spanier, Jerome. |
-- | author. |
-- | aut |
-- | http://id.loc.gov/vocabulary/relators/aut |
710 2# - | |
-- | SpringerLink (Online service) |
773 0# - | |
-- | Springer eBooks |
776 08 - | |
-- | Printed edition: |
-- | 9780387564517 |
776 08 - | |
-- | Printed edition: |
-- | 9780387488066 |
776 08 - | |
-- | Printed edition: |
-- | 9781493950584 |
856 40 - | |
-- | https://doi.org/10.1007/978-0-387-48807-3 |
912 ## - | |
-- | ZDB-2-SMA |
950 ## - | |
-- | Mathematics and Statistics (Springer-11649) |
No items available.