Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Transport in multilayered nanostructures:the dynamical mean-field theory approach James K Freericks

By: Material type: TextTextLanguage: English Publication details: World Scientific 2006Description: 344pISBN:
  • 9.78E+12
Subject(s): DDC classification:
  • 620.5
Online resources: Summary: This novel book is the first comprehensive text on dynamical mean-field theory (DMFT), which has emerged over the past two decades as one of the most powerful new developments in many-body physics. Written by one of the key researchers in the field, the volume develops the formalism of many-body Green's functions using the equation of motion approach, which requires an undergraduate solid state physics course and a graduate quantum mechanics course as prerequisites. The DMFT is applied to study transport in multilayered nanostructures, which is likely to be one of the most prominent applications of nanotechnology in the coming years. The text is modern in scope focusing on exact numerical methods rather than the perturbation theory. Formalism is developed first for the bulk and then for the inhomogeneous multilayered systems. The science behind the metal-insulator transition, electronic
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
E-BOOKS ISI Library, Kolkata 620.5 (Browse shelf(Opens below)) Not for loan EB549
Total holds: 0

This novel book is the first comprehensive text on dynamical mean-field theory (DMFT), which has emerged over the past two decades as one of the most powerful new developments in many-body physics. Written by one of the key researchers in the field, the volume develops the formalism of many-body Green's functions using the equation of motion approach, which requires an undergraduate solid state physics course and a graduate quantum mechanics course as prerequisites. The DMFT is applied to study transport in multilayered nanostructures, which is likely to be one of the most prominent applications of nanotechnology in the coming years. The text is modern in scope focusing on exact numerical methods rather than the perturbation theory. Formalism is developed first for the bulk and then for the inhomogeneous multilayered systems. The science behind the metal-insulator transition, electronic

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in