Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Normal view MARC view ISBD view

Fuzzy modeling and genetic algorithms for data mining and exploration [electronic resource] / Earl Cox.

By: Cox, Earl.
Material type: TextTextSeries: Morgan Kaufmann series in data management systems: Publisher: Amsterdam ; Boston : Elsevier/Morgan Kaufmann, c2005Description: 1 online resource (xxi, 530 p.) : ill.ISBN: 9780121942755; 0121942759; 9780080470597 (electronic bk.); 0080470599 (electronic bk.).Subject(s): Data mining | Fuzzy logic | Genetic algorithms | Data mining | Genetische algoritmen | Fuzzy logic | COMPUTERS -- Database Management -- Data MiningGenre/Form: Electronic books.Additional physical formats: Print version:: Fuzzy modeling and genetic algorithms for data mining and exploration.DDC classification: 006.3/12 Online resources: EBSCOhost
Contents:
Foundations and ideas -- Principal model types -- Approaches to model building -- Fundamental concepts of fuzzy logic -- Fundamental concepts of fuzzy systems -- Fuzzy SQL and intelligent queries -- Fuzzy clustering -- Fuzzy rule induction -- Fundamental concepts of genetic algorithms -- Genetic resource scheduling optimization -- Genetic tuning of fuzzy models.
Summary: Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration is a handbook for analysts, engineers, and managers involved in developing data mining models in business and government. As youll discover, fuzzy systems are extraordinarily valuable tools for representing and manipulating all kinds of data, and genetic algorithms and evolutionary programming techniques drawn from biology provide the most effective means for designing and tuning these systems. You dont need a background in fuzzy modeling or genetic algorithms to benefit, for this book provides it, along with detailed instruction in methods that you can immediately put to work in your own projects. The author provides many diverse examples and also an extended example in which evolutionary strategies are used to create a complex scheduling system. * Written to provide analysts, engineers, and managers with the background and specific instruction needed to develop and implement more effective data mining systems. * Helps you to understand the trade-offs implicit in various models and model architectures. * Provides extensive coverage of fuzzy SQL querying, fuzzy clustering, and fuzzy rule induction. * Lays out a roadmap for exploring data, selecting model system measures, organizing adaptive feedback loops, selecting a model configuration, implementing a working model, and validating the final model. * In an extended example, applies evolutionary programming techniques to solve a complicated scheduling problem. * Presents examples in C, C++, Java, and easy-to-understand pseudo-code. * Extensive online component, including sample code and a complete data mining workbench.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Includes bibliographical references and index.

Foundations and ideas -- Principal model types -- Approaches to model building -- Fundamental concepts of fuzzy logic -- Fundamental concepts of fuzzy systems -- Fuzzy SQL and intelligent queries -- Fuzzy clustering -- Fuzzy rule induction -- Fundamental concepts of genetic algorithms -- Genetic resource scheduling optimization -- Genetic tuning of fuzzy models.

Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration is a handbook for analysts, engineers, and managers involved in developing data mining models in business and government. As youll discover, fuzzy systems are extraordinarily valuable tools for representing and manipulating all kinds of data, and genetic algorithms and evolutionary programming techniques drawn from biology provide the most effective means for designing and tuning these systems. You dont need a background in fuzzy modeling or genetic algorithms to benefit, for this book provides it, along with detailed instruction in methods that you can immediately put to work in your own projects. The author provides many diverse examples and also an extended example in which evolutionary strategies are used to create a complex scheduling system. * Written to provide analysts, engineers, and managers with the background and specific instruction needed to develop and implement more effective data mining systems. * Helps you to understand the trade-offs implicit in various models and model architectures. * Provides extensive coverage of fuzzy SQL querying, fuzzy clustering, and fuzzy rule induction. * Lays out a roadmap for exploring data, selecting model system measures, organizing adaptive feedback loops, selecting a model configuration, implementing a working model, and validating the final model. * In an extended example, applies evolutionary programming techniques to solve a complicated scheduling problem. * Presents examples in C, C++, Java, and easy-to-understand pseudo-code. * Extensive online component, including sample code and a complete data mining workbench.

Description based on print version record.

There are no comments for this item.

Log in to your account to post a comment.

Other editions of this work

Fuzzy modeling and genetic algorithms for data mining and exploration by Cox, Earl. ©2005
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in


Visitor Counter