Internet-scale pattern recognition : new techniques for voluminous data sets and data clouds / Anang Hudaya Muhamad Amin, Asad I. Khan and Benny B. Nasution.
Material type: TextPublication details: Boca Raton : CRC Press, c2013.Description: xviii, 179 p. : ill. ; 24 cmISBN:- 9781466510968 (hardback)
- 006.312 23 M952
Item type | Current library | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|
Books | ISI Library, Kolkata | 006.312 M952 (Browse shelf(Opens below)) | Available | 135319 |
Browsing ISI Library, Kolkata shelves Close shelf browser (Hides shelf browser)
Includes bibliographical references (p. 167-175) and index.
Preface --
Acknowledgments --
About the Authors --
I. Recognition: A New Perspective --
1. Introduction --
1.1. As We See, We Learn --
1.2. Recognition at a Large Scale --
1.3. Computational Intelligence Approach for Pattern Recognition --
1.4. Scalability in Pattern Recognition --
1.4.1. Common Barriers --
1.4.2. Possible Solutions --
1.4.3. Distributed Computing Solution for Scalability of PR Schemes --
2. Distributed Approach for Pattern Recognition --
2.1. Scalability of Neural Network Approaches --
2.1.1. Pattern Storage Capacity --
2.1.2. Inter-Neuron Communication Frequency --
2.2. Key Components of DPR --
2.2.1. Learning Mechanism --
2.2.2. Processing Approach --
2.2.3. Training Procedure --
2.3. System Approaches --
2.4. Pattern Distribution Techniques --
2.4.1. Subpattern Distribution --
2.4.2. Pattern Set Distribution --
2.5. Current DPR Schemes --
2.5.1. Graph Neuron --
2.5.2. Hierarchical Graph Neuron --
2.5.3. Distributed Hierarchical Graph Neuron --
2.6. Resource Considerations for DPR Implementations --
2.6.1. Resource-Aware Approach --
2.6.2. Message-Passing Model in DPR --
II. Evolution of Internet-Scale Recognition --
3. One-Shot Learning Considerations --
3.1. One-Shot Learning Graph Neuron (GN) Scheme --
3.1.1. Pattern Representation --
3.1.2. Recognition Procedure --
3.2. One-Shot Learning Model --
3.2.1. Bias Array Design for Pattern Memorization --
3.2.2. Collaborative-Comparison Learning Technique --
3.3. GN Complexity Estimation --
3.4. Graph Neuron Limitations --
3.5. Significance of One-Shot Learning --
4. Hierarchical Model for Pattern Recognition --
4.1. Evolution of One-Shot Learning: The Hierarchical Approach --
4.1.1. Solution to Crosstalk Problem --
4.1.2. Computational Design for a Hierarchical One-Shot Learning DPR Scheme --
4.1.3. HGN Recognition Procedure --
4.2. Complexity and Scalability of Hierarchical DPR Scheme --
4.2.1. Complexity Estimation --
4.2.2. Scalability in HGN Approach --
4.3. Reducing Hierarchical Complexity: A Distributed Approach --
4.3.1. Distributed Neurons of HGN Network --
4.3.2. Distributed HGN Approach --
4.4. Design Evaluation for Distributed DPR Approach --
4.4.1. Non-Uniform Distribution --
4.4.2. Uniform Distribution --
5. Recognition via Divide-and-Distribute Approach --
5.1. Divide-and-Distribute Approach for One-Shot Learning
S-PR Scheme --
5.1.1. Associative Memory (AM) Concept in Pattern Recognition --
5.1.2. DHGN Computational Design --
5.1.3. Dual-Phase Recognition Procedure --
5.2. Dimensionality Reduction in Pattern Pre-Processing --
5.2.1. Structural Reduction --
5.2.2. Content Reduction --
5.3. Remarks on DHGN DPR Scheme --
III. Systems and Tools --
6. Internet-Scale Applications Development --
6.1. Distributed Computing Models for IS-PR --
6.1.1. Commodity Grid (CoG) --
6.1.2. Cloud Computing --
6.1.3. Peer-to-Peer (P2P) Computing --
6.2. Parallel Programming Techniques --
6.2.1. Message-Passing Scheme --
6.2.2. GPU Programming --
6.3. From Coding to Applications --
IV. Implementations and Applications --
7. Multi-Feature Classifications for Complex Data --
7.1. Data Features for Pattern Recognition --
7.2. Distributed Multi-Feature Recognition --
7.2.1. Conceptual Design and Implementation --
7.2.2. Complexity Estimation --
7.3. Handwritten Object Classification with Multiple Features --
7.3.1. Handwritten Object --
7.3.2. Classification Procedures --
7.4. Distributed Multi-Feature Recognition Perspective --
8. Pattern Recognition within Coarse-Grained Networks --
8.1. Network Granularity Considerations --
8.1.1. DHGN Configurations for Adaptive Granularity --
8.1.2. DHGN Commodity Grid Framework --
8.2. Face Recognition Using the Multi-Feature DPR Approach --
8.2.1. Color and Spatio-Structural Features Consideration --
8.3. Distributed Data Management within Cloud Computing --
8.3.1. Cloud Data Access Scheme --
8.3.2. DHGN Approach for Cloud Data Access --
8.4. Adaptive Recognition: A Different Perspective --
9. Event Detection within Pine-Grained Networks --
9.1. Distributed Event Detection Scheme for Wireless Sensor Networks --
9.1.1. WSN Event Detection --
9.1.2. DHGN-WSN Event Detection Configuration --
9.1.3. Dimensionality Reduction in Sensory Data --
9.1.4. Event Classification --
9.1.5. Performance Metrics: Memory Utilization --
9.1.6. Spatio-Temporal Analysis of Event Data --
9.2. Integrated Grid-Sensor Scheme for Structural Analysis --
9.2.1. Integrated Grid-Sensor Network Framework for Structural Engineering --
9.2.2. Structural Analysis, Design, and Monitoring Applications --
9.3. Distributed Event Detection: A Lightweight Approach --
V. The Way Forward --
10. Recognition: The Future and Beyond --
10.1. Medium of Change --
10.2. Future of Internet-Scale PR --
10.3. Making a Case --
10.3.1. Changing the Fundamentals --
10.3.2. Recognition as Commodity --
Bibliography --
Index.
"This cutting-edge reference outlines the underlying theory and principles of efficient and effective distributed pattern recognition involving one-shot learning and in-network processing for different types of applications, including multimedia retrieval systems and event detection over different network environments. Investigating one-shot learning and in-network processing as complementary mechanisms for efficient and accurate distributed pattern analyses, it presents the technical aspects related to the development of scalable pattern recognition using a number of contemporary application development tools. It also considers scalability of pattern recognition schemes when dealing with such data"--
There are no comments on this title.