Combinatorial Floer homology / Vin de Silva, Joel W. Robbin and Dietmar A. Salamon.
Material type: TextSeries: Memoirs of the American Mathematical Society ; v 230, no 1080.Publication details: Providence : American Mathematical Society, c2014.Description: v, 114 p. : illustrations ; 26 cmISBN:- 9780821898864 (alk. paper)
- 510 23 Am512
Item type | Current library | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|
Books | ISI Library, Kolkata | 510 Am512 (Browse shelf(Opens below)) | Available | 135901 |
Browsing ISI Library, Kolkata shelves Close shelf browser (Hides shelf browser)
"Volume 230, number 1080 (second of 5 numbers), July 2014"
Includes bibliographical references and index.
1. Introduction --
Part I: The Viterbo-Maslov Index --
Part II: Combinatorial lunes --
Part III: Floer homology --
Appendix A: The space of paths --
Appendix B: Diffeomorphisms of the half disc --
Appendix C: Homological algebra --
Appendix D: Asymptotic behavior of holomorphic strips--
Bibliography--
Index.
The authors define combinatorial Floer homology of a transverse pair of noncontractible nonisotopic embedded loops in an oriented 2 -manifold without boundary, prove that it is invariant under isotopy, and prove that it is isomorphic to the original Lagrangian Floer homology. Their proof uses a formula for the Viterbo-Maslov index for a smooth lune in a 2 -manifold.
There are no comments on this title.