Optimal version of Hua's fundamental theorem of geometry of rectangular matrices / Peter Semrl.
Material type: TextSeries: Memoirs of the American Mathematical Society ; v 232, no 1089.Publication details: Providence : American Mathematical Society, c2014.Description: v, 74 p. ; 25 cmISBN:- 9780821898451 (pbk. : acidfree paper)
- 510 23 Am512
Item type | Current library | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|
Books | ISI Library, Kolkata | 510 Am512 (Browse shelf(Opens below)) | Available | 135880 |
"November 2014, volume 232, number 1089 (first of 6 numbers)"
Includes bibliographical references (pages 73-74).
1. Introduction --
2. Notation and basic definitions --
3. Examples --
4. Statement of main results --
5. Proofs --
5.1 Preliminary results --
5.2 Splitting the proof of main results into subcases --
5.3 Square case --
5.4 Degenerate case --
5.5 Non-square case --
5.6 Proofs of corollaries--
Acknowledgments--
Bibliography.
Hua's fundamental theorem of geometry of matrices describes the general form of bijective maps on the space of all m??????n matrices over a division ring D which preserve adjacency in both directions. Motivated by several applications the author studies a long standing open problem of possible improvements.
There are no comments on this title.