Problem of Catalan / Yuri F. Bilu, Yann Bugeaud and Maurice Mignotte.
Material type: TextPublication details: New York : Springer, 2014.Description: xiv, 245 p. ; 25 cmISBN:- 9783319100937
- 512.922 23 B599
Item type | Current library | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|
Books | ISI Library, Kolkata | 512.922 B599 (Browse shelf(Opens below)) | Available | 136313 |
Browsing ISI Library, Kolkata shelves Close shelf browser (Hides shelf browser)
No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | |||
512.9 M111 Fastperiodische funktionen | 512.9 Sa192 Some contributions to semidefinite linear complementarity problem | 512.922 Ar756 Lyapunov exponents | 512.922 B599 Problem of Catalan / | 512.922 C748(2) Lyapunov exponents | 512.922 M346 Areas and logarithms | 512.922 M346 Areas and logarithms |
Includes bibliographical references and indexes.
1. A historical account --
2. Even exponents --
3. Cassels' relations --
4. Cyclotomic fields --
5. Dirichlet L-series and class number formulas --
6. Higher divisibility theorems --
7. Gauss sums and Stickelberger's theorem --
8. Mihăilescu's ideal --
9. The real part of Mihăilescu's ideal --
10. Cyclotomic units --
11. Selmer group and proof of Catalan's conjecture --
12. The theorem of Thaine --
13. Baker's method and Tijdeman's argument --
Appendix A: Number fields --
Appendix B: Heights --
Appendix C: Commutative rings, modules, semi-simplicity --
Appendix D: Group rings and characters --
Appendix E: Reduction and torsion of finite G-modules --
Appendix F: Radical extensions--
References--
Author Index--
Subject Index.
In this book it is given a complete and (almost) self-contained exposition of Mihailescu’s work, which must be understandable by a curious university student, not necessarily specializing in Number Theory. We assume a very modest background:a standard university course of algebra, including basic Galois theory, and working knowledge of basic algebraic number theory.
There are no comments on this title.