Basic category theory / Tom Leinster.
Material type: TextSeries: Cambridge studies in advanced mathematics ; 143Publication details: Cambridge : Cambridge University Press, 2014.Description: viii, 183 p. : illustrations ; 24 cmISBN:- 9781107044241
- 512.62 23 L531
Item type | Current library | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|
Books | ISI Library, Kolkata | 512.62 L531 (Browse shelf(Opens below)) | Available | 136238 |
Browsing ISI Library, Kolkata shelves Close shelf browser (Hides shelf browser)
512.62 Aw967 Category theory | 512.62 Ei36 Minimal free resolutions over complete intersections / | 512.62 G481 From objects to diagrams for ranges of functors | 512.62 L531 Basic category theory / | 512.62 L821 Algebraic operads | 512.62 N931 Functorial model theory : | 512.62 Sp761 Category theory for the sciences / |
Includes indexes.
1. Categories, functors and natural transformations --
2. Adjoints --
3. Interlude on sets --
4. Representables --
5. Limits --
6. Adjoints, representables and limits --
Appendix: Proof of the general adjoint functor theorem--
Further reading--
Index of notation--
Index.
At the heart of this short introduction to category theory is the idea of a universal property, important throughout mathematics. After an introductory chapter giving the basic definitions, separate chapters explain three ways of expressing universal properties: via adjoint functors, representable functors, and limits. A final chapter ties all three together.
There are no comments on this title.