Quantum electronics for atomic physics and telecommunication / Warren Nagourney.
Material type: TextSeries: Oxford graduate textsPublication details: Oxford : Oxford University Press, 2014.Edition: 2nd edDescription: xv, 475 p. : illustrations ; 26 cmISBN:- 9780199665488 (hbk.)
- 537.5 23 N152
Item type | Current library | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|
Books | ISI Library, Kolkata | 537.5 N152 (Browse shelf(Opens below)) | Available | 136361 |
Includes bibliographical references and index.
1.Gaussian beams --
1.1.Introduction --
1.2.The paraxial wave equation --
1.3.Gaussian beam functions and the complex beam parameter, q --
1.4.Some Gaussian beam properties --
1.5.The phase term: Gouy phase --
1.6.Simple transformation properties of the complex beam parameter --
1.7.Matrix formulation of paraxial ray optics: ABCD rule --
1.8.Further reading --
1.9.Problems --
2.Optical resonators - geometrical properties --
2.1.Introduction --
2.2.The two-mirror standing-wave cavity --
2.3.Stability --
2.4.Solution for an arbitrary two-mirror stable cavity --
2.5.Higher-order modes --
2.6.Resonant frequencies --
2.7.The traveling-wave (ring) cavity --
2.8.Astigmatism in a ring cavity --
2.9.Mode matching --
2.10.Beam quality characterization: the M2 parameter --
2.11.Further reading --
2.12.Problems --
3.Energy relations in optical cavities --
3.1.Introduction --
3.2.Reflection and transmission at an interface --
Contents note continued: 3.3.Reflected fields from standing-wave cavity --
3.4.Internal (circulating) field in a standing-wave cavity --
3.5.Reflected and internal intensities --
3.6.The resonant character of the reflected and circulating intensities --
3.7.Impedance matching --
3.8.Fields and intensities in ring cavity --
3.9.A novel "reflective" coupling scheme using a tilted wedge --
3.10.Photon lifetime --
3.11.The quality factor, Q --
3.12.Relation between Q and finesse --
3.13.Alternative representation of cavity loss --
3.14.Experimental determination of cavity parameters --
3.15.Farther reading --
3.16.Problems --
4.Optical cavity as frequency discriminator --
4.1.Introduction --
4.2.A simple example --
4.3.Side of resonance discriminant --
4.4.The manipulation of polarized beams: the Jones calculus --
4.5.The polarization technique --
4.6.Frequency modulation --
4.7.The Pound--Drever--Hall approach --
4.8.Frequency response of a cavity-based discriminator --
Contents note continued: 4.9.Further reading --
4.10.Problems --
5.Laser gain and some of its consequences --
5.1.Introduction --
5.2.The wave equation --
5.3.The interaction term --
5.4.The rotating-wave approximation --
5.5.Density matrix of two-level system --
5.6.The classical Bloch equation --
5.7.Connection between two-level atom and spin-1/2 system --
5.8.Radiative and collision-induced damping --
5.9.The atomic susceptibility and optical gain --
5.10.The Einstein A and B coefficients --
5.11.Doppler broadening: an example of inhomogeneous broadening --
5.12.Comments on saturation --
5.13.Further reading --
5.14.Problems --
6.Laser oscillation and pumping mechanisms --
6.1.Introduction --
6.2.The condition for laser oscillation --
6.3.The power output of a laser --
6.4.Pumping in three-level and four-level laser systems --
6.5.Laser oscillation frequencies and pulling --
6.6.Inhomogeneous broadening and multimode behavior --
6.7.Spatial hole burning --
Contents note continued: 6.8.Some consequences of the photon model for laser radiation --
6.9.The photon statistics of laser radiation --
6.10.The ultimate linewidth of a laser --
6.11.Further reading --
6.12.Problems --
7.Descriptions of specific CW laser systems --
7.1.Introduction --
7.2.The He-Ne laser --
7.3.The argon-ion laser --
7.4.The continuous-wave organic dye laser --
7.5.The titanium--sapphire laser --
7.6.The CW neodymium--yttrium-aluminum--garnet (Nd:YAG) laser --
7.7.The YAG non-planar ring oscillator: a novel ring laser geometry --
7.8.Diode-pumped solid-state (DPSS) YAG lasers --
7.9.Further reading --
8.Laser gain in a semiconductor --
8.1.Introduction --
8.2.Solid-state physics background --
8.3.Optical gain in a semiconductor --
8.4.Further reading --
8.5.Problems --
9.Semiconductor diode lasers --
9.1.Introduction --
9.2.The homojunction semiconductor laser --
9.3.The double heterostructure laser --
9.4.Quantum-well lasers --
Contents note continued: 9.5.Distributed feedback lasers --
9.6.The rate equations and relaxation oscillations --
9.7.Diode laser frequency control and linewidth --
9.8.External cavity diode lasers (ECDLs) --
9.9.Semiconductor laser amplifiers and injection locking --
9.10.Miscellaneous characteristics of semiconductor lasers --
9.11.Further reading --
9.12.Problems --
10.Guided-wave devices and fiber lasers --
10.1.Introduction --
10.2.Slab waveguide: preliminary analysis --
10.3.Wave propagation in a slab waveguide --
10.4.Wave propagation in a fiber --
ray theory --
10.5.Wave propagation in a fiber --
wave theory --
10.6.Dispersion in fibers and waveguides --
10.7.Coupling into optical fibers --
10.8.Fiber-optic components --
10.8.1.Directional coupler --
10.8.2.The loop reflector --
10.8.3.Fiber Bragg gratings --
10.8.4.Optical isolators and circulators --
10.8.5.Amplitude and phase modulation --
10.8.6.Polarization-preserving fibers --
10.8.7.Polarization controller --
Contents note continued: 10.9.The physics of rare earth ions in glasses --
10.10.Some specific fiber lasers --
10.10.1.Fiber laser resonators --
10.10.2.Erbium and erbium/ytterbium lasers --
10.10.3.Neodymium lasers --
10.10.4.Ytterbium lasers --
10.10.5.Thulium lasers --
10.11.Further reading --
10.12.Problems --
11.Mode-locked lasers and frequency metrology --
11.1.Introduction --
11.2.Theory of mode locking --
11.3.Mode-locking techniques --
11.4.Dispersion and its compensation --
11.5.The mode-locked Ti-sapphire laser --
11.6.Mode-locked fiber lasers --
11.7.Frequency metrology using a femtosecond laser --
11.8.The carrier envelope offset --
11.9.Comb generation in a microresonator --
11.10.Further reading --
11.11.Problems --
12.Laser frequency stabilization and control systems --
12.1.Introduction --
12.2.Laser frequency stabilization --
a first look --
12.3.The effect of the loop filter --
12.4.Elementary noise considerations --
12.5.Some linear system theory --
Contents note continued: 12.6.The stability of a linear system --
12.7.Negative feedback --
12.8.Some actual control systems --
12.9.Temperature stabilization --
12.10.Laser frequency stabilization --
12.11.Optical-fiber phase noise and its cancellation --
12.12.Characterization of laser frequency stability --
12.13.Frequency locking to a noisy resonance --
12.14.Further reading --
12.15.Problems --
13.Atomic and molecular discriminants --
13.1.Introduction --
13.2.Sub-Doppler saturation spectroscopy --
13.3.Sub-Doppler dichroic atomic vapor laser locking and polarization spectroscopy --
13.4.An example of a side-of-line atomic discriminant --
13.5.Further reading --
13.6.Problems --
14.Nonlinear optics --
14.1.Introduction --
14.2.Anisotropic crystals --
14.3.Second-harmonic generation --
14.4.Birefringent phase matching --
14.5.Quasi-phase matching --
14.6.Second-harmonic generation using a focused beam --
14.7.Second-harmonic generation in a cavity --
Contents note continued: 14.8.Sum-frequency generation --
14.9.Periodically poled optical waveguides --
14.10.Parametric interactions --
14.11.Further reading --
14.12.Problems --
15.Frequency and amplitude modulation --
15.1.Introduction --
15.2.The linear electro-optic effect --
15.3.Bulk electro-optic modulators --
15.4.Traveling-wave electro-optic modulators --
15.5.Acousto-optic modulators --
15.6.Further reading --
15.7.Problems--
References--
Index.
This book discusses theoretical and practical aspects for generating and manipulating laser radiation. The second edition includes a new complete chapter on fiber lasers, as well as new coverage of mode locked fiber lasers, comb generation in a micro-resonator, and periodically poled optical waveguides.
There are no comments on this title.