Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Quantum electronics for atomic physics and telecommunication / Warren Nagourney.

By: Material type: TextTextSeries: Oxford graduate textsPublication details: Oxford : Oxford University Press, 2014.Edition: 2nd edDescription: xv, 475 p. : illustrations ; 26 cmISBN:
  • 9780199665488 (hbk.)
Subject(s): DDC classification:
  • 537.5 23 N152
Contents:
1.Gaussian beams -- 1.1.Introduction -- 1.2.The paraxial wave equation -- 1.3.Gaussian beam functions and the complex beam parameter, q -- 1.4.Some Gaussian beam properties -- 1.5.The phase term: Gouy phase -- 1.6.Simple transformation properties of the complex beam parameter -- 1.7.Matrix formulation of paraxial ray optics: ABCD rule -- 1.8.Further reading -- 1.9.Problems -- 2.Optical resonators - geometrical properties -- 2.1.Introduction -- 2.2.The two-mirror standing-wave cavity -- 2.3.Stability -- 2.4.Solution for an arbitrary two-mirror stable cavity -- 2.5.Higher-order modes -- 2.6.Resonant frequencies -- 2.7.The traveling-wave (ring) cavity -- 2.8.Astigmatism in a ring cavity -- 2.9.Mode matching -- 2.10.Beam quality characterization: the M2 parameter -- 2.11.Further reading -- 2.12.Problems -- 3.Energy relations in optical cavities -- 3.1.Introduction -- 3.2.Reflection and transmission at an interface -- Contents note continued: 3.3.Reflected fields from standing-wave cavity -- 3.4.Internal (circulating) field in a standing-wave cavity -- 3.5.Reflected and internal intensities -- 3.6.The resonant character of the reflected and circulating intensities -- 3.7.Impedance matching -- 3.8.Fields and intensities in ring cavity -- 3.9.A novel "reflective" coupling scheme using a tilted wedge -- 3.10.Photon lifetime -- 3.11.The quality factor, Q -- 3.12.Relation between Q and finesse -- 3.13.Alternative representation of cavity loss -- 3.14.Experimental determination of cavity parameters -- 3.15.Farther reading -- 3.16.Problems -- 4.Optical cavity as frequency discriminator -- 4.1.Introduction -- 4.2.A simple example -- 4.3.Side of resonance discriminant -- 4.4.The manipulation of polarized beams: the Jones calculus -- 4.5.The polarization technique -- 4.6.Frequency modulation -- 4.7.The Pound--Drever--Hall approach -- 4.8.Frequency response of a cavity-based discriminator -- Contents note continued: 4.9.Further reading -- 4.10.Problems -- 5.Laser gain and some of its consequences -- 5.1.Introduction -- 5.2.The wave equation -- 5.3.The interaction term -- 5.4.The rotating-wave approximation -- 5.5.Density matrix of two-level system -- 5.6.The classical Bloch equation -- 5.7.Connection between two-level atom and spin-1/2 system -- 5.8.Radiative and collision-induced damping -- 5.9.The atomic susceptibility and optical gain -- 5.10.The Einstein A and B coefficients -- 5.11.Doppler broadening: an example of inhomogeneous broadening -- 5.12.Comments on saturation -- 5.13.Further reading -- 5.14.Problems -- 6.Laser oscillation and pumping mechanisms -- 6.1.Introduction -- 6.2.The condition for laser oscillation -- 6.3.The power output of a laser -- 6.4.Pumping in three-level and four-level laser systems -- 6.5.Laser oscillation frequencies and pulling -- 6.6.Inhomogeneous broadening and multimode behavior -- 6.7.Spatial hole burning -- Contents note continued: 6.8.Some consequences of the photon model for laser radiation -- 6.9.The photon statistics of laser radiation -- 6.10.The ultimate linewidth of a laser -- 6.11.Further reading -- 6.12.Problems -- 7.Descriptions of specific CW laser systems -- 7.1.Introduction -- 7.2.The He-Ne laser -- 7.3.The argon-ion laser -- 7.4.The continuous-wave organic dye laser -- 7.5.The titanium--sapphire laser -- 7.6.The CW neodymium--yttrium-aluminum--garnet (Nd:YAG) laser -- 7.7.The YAG non-planar ring oscillator: a novel ring laser geometry -- 7.8.Diode-pumped solid-state (DPSS) YAG lasers -- 7.9.Further reading -- 8.Laser gain in a semiconductor -- 8.1.Introduction -- 8.2.Solid-state physics background -- 8.3.Optical gain in a semiconductor -- 8.4.Further reading -- 8.5.Problems -- 9.Semiconductor diode lasers -- 9.1.Introduction -- 9.2.The homojunction semiconductor laser -- 9.3.The double heterostructure laser -- 9.4.Quantum-well lasers -- Contents note continued: 9.5.Distributed feedback lasers -- 9.6.The rate equations and relaxation oscillations -- 9.7.Diode laser frequency control and linewidth -- 9.8.External cavity diode lasers (ECDLs) -- 9.9.Semiconductor laser amplifiers and injection locking -- 9.10.Miscellaneous characteristics of semiconductor lasers -- 9.11.Further reading -- 9.12.Problems -- 10.Guided-wave devices and fiber lasers -- 10.1.Introduction -- 10.2.Slab waveguide: preliminary analysis -- 10.3.Wave propagation in a slab waveguide -- 10.4.Wave propagation in a fiber -- ray theory -- 10.5.Wave propagation in a fiber -- wave theory -- 10.6.Dispersion in fibers and waveguides -- 10.7.Coupling into optical fibers -- 10.8.Fiber-optic components -- 10.8.1.Directional coupler -- 10.8.2.The loop reflector -- 10.8.3.Fiber Bragg gratings -- 10.8.4.Optical isolators and circulators -- 10.8.5.Amplitude and phase modulation -- 10.8.6.Polarization-preserving fibers -- 10.8.7.Polarization controller -- Contents note continued: 10.9.The physics of rare earth ions in glasses -- 10.10.Some specific fiber lasers -- 10.10.1.Fiber laser resonators -- 10.10.2.Erbium and erbium/ytterbium lasers -- 10.10.3.Neodymium lasers -- 10.10.4.Ytterbium lasers -- 10.10.5.Thulium lasers -- 10.11.Further reading -- 10.12.Problems -- 11.Mode-locked lasers and frequency metrology -- 11.1.Introduction -- 11.2.Theory of mode locking -- 11.3.Mode-locking techniques -- 11.4.Dispersion and its compensation -- 11.5.The mode-locked Ti-sapphire laser -- 11.6.Mode-locked fiber lasers -- 11.7.Frequency metrology using a femtosecond laser -- 11.8.The carrier envelope offset -- 11.9.Comb generation in a microresonator -- 11.10.Further reading -- 11.11.Problems -- 12.Laser frequency stabilization and control systems -- 12.1.Introduction -- 12.2.Laser frequency stabilization -- a first look -- 12.3.The effect of the loop filter -- 12.4.Elementary noise considerations -- 12.5.Some linear system theory -- Contents note continued: 12.6.The stability of a linear system -- 12.7.Negative feedback -- 12.8.Some actual control systems -- 12.9.Temperature stabilization -- 12.10.Laser frequency stabilization -- 12.11.Optical-fiber phase noise and its cancellation -- 12.12.Characterization of laser frequency stability -- 12.13.Frequency locking to a noisy resonance -- 12.14.Further reading -- 12.15.Problems -- 13.Atomic and molecular discriminants -- 13.1.Introduction -- 13.2.Sub-Doppler saturation spectroscopy -- 13.3.Sub-Doppler dichroic atomic vapor laser locking and polarization spectroscopy -- 13.4.An example of a side-of-line atomic discriminant -- 13.5.Further reading -- 13.6.Problems -- 14.Nonlinear optics -- 14.1.Introduction -- 14.2.Anisotropic crystals -- 14.3.Second-harmonic generation -- 14.4.Birefringent phase matching -- 14.5.Quasi-phase matching -- 14.6.Second-harmonic generation using a focused beam -- 14.7.Second-harmonic generation in a cavity -- Contents note continued: 14.8.Sum-frequency generation -- 14.9.Periodically poled optical waveguides -- 14.10.Parametric interactions -- 14.11.Further reading -- 14.12.Problems -- 15.Frequency and amplitude modulation -- 15.1.Introduction -- 15.2.The linear electro-optic effect -- 15.3.Bulk electro-optic modulators -- 15.4.Traveling-wave electro-optic modulators -- 15.5.Acousto-optic modulators -- 15.6.Further reading -- 15.7.Problems-- References-- Index.
Summary: This book discusses theoretical and practical aspects for generating and manipulating laser radiation. The second edition includes a new complete chapter on fiber lasers, as well as new coverage of mode locked fiber lasers, comb generation in a micro-resonator, and periodically poled optical waveguides.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Books ISI Library, Kolkata 537.5 N152 (Browse shelf(Opens below)) Available 136361
Total holds: 0

Includes bibliographical references and index.

1.Gaussian beams --
1.1.Introduction --
1.2.The paraxial wave equation --
1.3.Gaussian beam functions and the complex beam parameter, q --
1.4.Some Gaussian beam properties --
1.5.The phase term: Gouy phase --
1.6.Simple transformation properties of the complex beam parameter --
1.7.Matrix formulation of paraxial ray optics: ABCD rule --
1.8.Further reading --
1.9.Problems --
2.Optical resonators - geometrical properties --
2.1.Introduction --
2.2.The two-mirror standing-wave cavity --
2.3.Stability --
2.4.Solution for an arbitrary two-mirror stable cavity --
2.5.Higher-order modes --
2.6.Resonant frequencies --
2.7.The traveling-wave (ring) cavity --
2.8.Astigmatism in a ring cavity --
2.9.Mode matching --
2.10.Beam quality characterization: the M2 parameter --
2.11.Further reading --
2.12.Problems --
3.Energy relations in optical cavities --
3.1.Introduction --
3.2.Reflection and transmission at an interface --
Contents note continued: 3.3.Reflected fields from standing-wave cavity --
3.4.Internal (circulating) field in a standing-wave cavity --
3.5.Reflected and internal intensities --
3.6.The resonant character of the reflected and circulating intensities --
3.7.Impedance matching --
3.8.Fields and intensities in ring cavity --
3.9.A novel "reflective" coupling scheme using a tilted wedge --
3.10.Photon lifetime --
3.11.The quality factor, Q --
3.12.Relation between Q and finesse --
3.13.Alternative representation of cavity loss --
3.14.Experimental determination of cavity parameters --
3.15.Farther reading --
3.16.Problems --
4.Optical cavity as frequency discriminator --
4.1.Introduction --
4.2.A simple example --
4.3.Side of resonance discriminant --
4.4.The manipulation of polarized beams: the Jones calculus --
4.5.The polarization technique --
4.6.Frequency modulation --
4.7.The Pound--Drever--Hall approach --
4.8.Frequency response of a cavity-based discriminator --
Contents note continued: 4.9.Further reading --
4.10.Problems --
5.Laser gain and some of its consequences --
5.1.Introduction --
5.2.The wave equation --
5.3.The interaction term --
5.4.The rotating-wave approximation --
5.5.Density matrix of two-level system --
5.6.The classical Bloch equation --
5.7.Connection between two-level atom and spin-1/2 system --
5.8.Radiative and collision-induced damping --
5.9.The atomic susceptibility and optical gain --
5.10.The Einstein A and B coefficients --
5.11.Doppler broadening: an example of inhomogeneous broadening --
5.12.Comments on saturation --
5.13.Further reading --
5.14.Problems --
6.Laser oscillation and pumping mechanisms --
6.1.Introduction --
6.2.The condition for laser oscillation --
6.3.The power output of a laser --
6.4.Pumping in three-level and four-level laser systems --
6.5.Laser oscillation frequencies and pulling --
6.6.Inhomogeneous broadening and multimode behavior --
6.7.Spatial hole burning --
Contents note continued: 6.8.Some consequences of the photon model for laser radiation --
6.9.The photon statistics of laser radiation --
6.10.The ultimate linewidth of a laser --
6.11.Further reading --
6.12.Problems --
7.Descriptions of specific CW laser systems --
7.1.Introduction --
7.2.The He-Ne laser --
7.3.The argon-ion laser --
7.4.The continuous-wave organic dye laser --
7.5.The titanium--sapphire laser --
7.6.The CW neodymium--yttrium-aluminum--garnet (Nd:YAG) laser --
7.7.The YAG non-planar ring oscillator: a novel ring laser geometry --
7.8.Diode-pumped solid-state (DPSS) YAG lasers --
7.9.Further reading --
8.Laser gain in a semiconductor --
8.1.Introduction --
8.2.Solid-state physics background --
8.3.Optical gain in a semiconductor --
8.4.Further reading --
8.5.Problems --
9.Semiconductor diode lasers --
9.1.Introduction --
9.2.The homojunction semiconductor laser --
9.3.The double heterostructure laser --
9.4.Quantum-well lasers --
Contents note continued: 9.5.Distributed feedback lasers --
9.6.The rate equations and relaxation oscillations --
9.7.Diode laser frequency control and linewidth --
9.8.External cavity diode lasers (ECDLs) --
9.9.Semiconductor laser amplifiers and injection locking --
9.10.Miscellaneous characteristics of semiconductor lasers --
9.11.Further reading --
9.12.Problems --
10.Guided-wave devices and fiber lasers --
10.1.Introduction --
10.2.Slab waveguide: preliminary analysis --
10.3.Wave propagation in a slab waveguide --
10.4.Wave propagation in a fiber --
ray theory --
10.5.Wave propagation in a fiber --
wave theory --
10.6.Dispersion in fibers and waveguides --
10.7.Coupling into optical fibers --
10.8.Fiber-optic components --
10.8.1.Directional coupler --
10.8.2.The loop reflector --
10.8.3.Fiber Bragg gratings --
10.8.4.Optical isolators and circulators --
10.8.5.Amplitude and phase modulation --
10.8.6.Polarization-preserving fibers --
10.8.7.Polarization controller --
Contents note continued: 10.9.The physics of rare earth ions in glasses --
10.10.Some specific fiber lasers --
10.10.1.Fiber laser resonators --
10.10.2.Erbium and erbium/ytterbium lasers --
10.10.3.Neodymium lasers --
10.10.4.Ytterbium lasers --
10.10.5.Thulium lasers --
10.11.Further reading --
10.12.Problems --
11.Mode-locked lasers and frequency metrology --
11.1.Introduction --
11.2.Theory of mode locking --
11.3.Mode-locking techniques --
11.4.Dispersion and its compensation --
11.5.The mode-locked Ti-sapphire laser --
11.6.Mode-locked fiber lasers --
11.7.Frequency metrology using a femtosecond laser --
11.8.The carrier envelope offset --
11.9.Comb generation in a microresonator --
11.10.Further reading --
11.11.Problems --
12.Laser frequency stabilization and control systems --
12.1.Introduction --
12.2.Laser frequency stabilization --
a first look --
12.3.The effect of the loop filter --
12.4.Elementary noise considerations --
12.5.Some linear system theory --
Contents note continued: 12.6.The stability of a linear system --
12.7.Negative feedback --
12.8.Some actual control systems --
12.9.Temperature stabilization --
12.10.Laser frequency stabilization --
12.11.Optical-fiber phase noise and its cancellation --
12.12.Characterization of laser frequency stability --
12.13.Frequency locking to a noisy resonance --
12.14.Further reading --
12.15.Problems --
13.Atomic and molecular discriminants --
13.1.Introduction --
13.2.Sub-Doppler saturation spectroscopy --
13.3.Sub-Doppler dichroic atomic vapor laser locking and polarization spectroscopy --
13.4.An example of a side-of-line atomic discriminant --
13.5.Further reading --
13.6.Problems --
14.Nonlinear optics --
14.1.Introduction --
14.2.Anisotropic crystals --
14.3.Second-harmonic generation --
14.4.Birefringent phase matching --
14.5.Quasi-phase matching --
14.6.Second-harmonic generation using a focused beam --
14.7.Second-harmonic generation in a cavity --
Contents note continued: 14.8.Sum-frequency generation --
14.9.Periodically poled optical waveguides --
14.10.Parametric interactions --
14.11.Further reading --
14.12.Problems --
15.Frequency and amplitude modulation --
15.1.Introduction --
15.2.The linear electro-optic effect --
15.3.Bulk electro-optic modulators --
15.4.Traveling-wave electro-optic modulators --
15.5.Acousto-optic modulators --
15.6.Further reading --
15.7.Problems--
References--
Index.

This book discusses theoretical and practical aspects for generating and manipulating laser radiation. The second edition includes a new complete chapter on fiber lasers, as well as new coverage of mode locked fiber lasers, comb generation in a micro-resonator, and periodically poled optical waveguides.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in