Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Local collapsing, orbifolds, and geometrization / Bruce Kleiner and John Lott.

By: Contributor(s): Material type: TextTextSeries: Asterisque ; 365.Publication details: Paris : Societe mathematique de France, 2014.Description: 177 p. : illustrations ; 24 cmISBN:
  • 9782856297957
Subject(s): DDC classification:
  • 510=4 23 As853
Contents:
Locally collapsed 3-manifolds -- Geometrization of three-dimensional orbifolds via Ricci flow-- References.
Summary: This volume has two papers, which can be read separately. The first paper concerns local collapsing in Riemannian geometry. We prove that a three-dimensional compact Riemannian manifold which is locally collapsed, with respect to a lower curvature bound, is a graph manifold. This theorem was stated by Perelman without proof and was used in his proof of the geometrization conjecture. The second paper is about the geometrization of orbifolds. A three-dimensional closed orientable orbifold, which has no bad suborbifolds, is known to have a geometric decomposition from work of Perelman in the manifold case, along with earlier work of Boileau-Leeb-Porti, Boileau-Maillot-Porti, Boileau-Porti, Cooper-Hodgson-Kerckhoff and Thurston. We give a new, logically independent, unified proof of the geometrization of orbifolds, using Ricci flow.--Provided by publisher
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Books ISI Library, Kolkata 510=4 As853 (Browse shelf(Opens below)) Available C26467
Total holds: 0

Includes bibliographical references.

Locally collapsed 3-manifolds --
Geometrization of three-dimensional orbifolds via Ricci flow--
References.

This volume has two papers, which can be read separately. The first paper concerns local collapsing in Riemannian geometry. We prove that a three-dimensional compact Riemannian manifold which is locally collapsed, with respect to a lower curvature bound, is a graph manifold. This theorem was stated by Perelman without proof and was used in his proof of the geometrization conjecture. The second paper is about the geometrization of orbifolds. A three-dimensional closed orientable orbifold, which has no bad suborbifolds, is known to have a geometric decomposition from work of Perelman in the manifold case, along with earlier work of Boileau-Leeb-Porti, Boileau-Maillot-Porti, Boileau-Porti, Cooper-Hodgson-Kerckhoff and Thurston. We give a new, logically independent, unified proof of the geometrization of orbifolds, using Ricci flow.--Provided by publisher

In English; abstract also in French.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in