Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Computational methods for electromagnetic phenomena : electrostatics in solvation, scattering, and electron transport / Wei Cai.

By: Material type: TextTextPublication details: Cambridge : Cambridge University Press, 2013.Description: xviii, 444 p. : illustrations ; 26 cmISBN:
  • 9781107021051
Subject(s): DDC classification:
  • 537.0151 23 C133
Contents:
Part I. Electrostatics in Solvations: 1. Dielectric constant and fluctuation formulae for molecular dynamics; 2. Poisson-Boltzmann electrostatics and analytical approximations; 3. Numerical methods for Poisson-Boltzmann equations; 4. Fast algorithms for long-range interactions; Part II. Electromagnetic Scattering: 5. Maxwell equations, potentials, and physical/artificial boundary conditions; 6. Dyadic Green's functions in layered media; 7. High order methods for surface electromagnetic integral equations; 8. High order hierarchical Nedelec edge elements; 9. Time domain methods - discontinuous Galerkin method and Yee scheme; 10. Computing scattering in periodic structures and surface plasmons; 11. Solving Schrödinger equations in waveguides and quantum dots; Part III. Electron Transport: 12. Quantum electron transport in semiconductors; 13. Non-equilibrium Green's function (NEGF) methods for transport; 14. Numerical methods for Wigner quantum transport; 15. Hydrodynamics electron transport and finite difference methods; 16. Transport models in plasma media and numerical methods; References; Index.
Summary: A unique and comprehensive graduate text and reference on numerical methods for electromagnetic phenomena, from atomistic to continuum scales, in biology, micro-to-optical waves, photonics, nanoelectronics and plasmas. The state-of-the-art numerical methods described include: Statistical fluctuation formula for the dielectric constant; Particle-Mesh-Ewald, Fast-Multipole-Method and image-based reaction field method for long-range interactions; High order singular/hypersingular (Nyström collocation/Galerkin) boundary and volume integral methods in layered media for Poisson-Boltzmann electrostatics, electromagnetic wave scattering and electron density waves in quantum dots; Absorbing and UPML boundary conditions; High order hierarchical Nédélec edge elements; High order discontinuous Galerkin (DG) and Yee finite difference time-domain methods; Finite element and plane wave frequency-domain methods for periodic structures; Generalized DG beam propagation method for optical waveguides; NEGF(Non-equilibrium Green's function) and Wigner kinetic methods for quantum transport; High order WENO and Godunov and central schemes for hydrodynamics transport; Vlasov-Fokker-Planck and PIC and constrained MHD transport in plasmas.
Tags from this library: No tags from this library for this title. Log in to add tags.

Includes bibliographical references and index.

Part I. Electrostatics in Solvations:
1. Dielectric constant and fluctuation formulae for molecular dynamics;
2. Poisson-Boltzmann electrostatics and analytical approximations;
3. Numerical methods for Poisson-Boltzmann equations;
4. Fast algorithms for long-range interactions;

Part II. Electromagnetic Scattering:
5. Maxwell equations, potentials, and physical/artificial boundary conditions;
6. Dyadic Green's functions in layered media;
7. High order methods for surface electromagnetic integral equations;
8. High order hierarchical Nedelec edge elements;
9. Time domain methods - discontinuous Galerkin method and Yee scheme;
10. Computing scattering in periodic structures and surface plasmons;
11. Solving Schrödinger equations in waveguides and quantum dots;

Part III. Electron Transport:
12. Quantum electron transport in semiconductors;
13. Non-equilibrium Green's function (NEGF) methods for transport;
14. Numerical methods for Wigner quantum transport;
15. Hydrodynamics electron transport and finite difference methods;
16. Transport models in plasma media and numerical methods;
References;
Index.

A unique and comprehensive graduate text and reference on numerical methods for electromagnetic phenomena, from atomistic to continuum scales, in biology, micro-to-optical waves, photonics, nanoelectronics and plasmas. The state-of-the-art numerical methods described include: Statistical fluctuation formula for the dielectric constant; Particle-Mesh-Ewald, Fast-Multipole-Method and image-based reaction field method for long-range interactions; High order singular/hypersingular (Nyström collocation/Galerkin) boundary and volume integral methods in layered media for Poisson-Boltzmann electrostatics, electromagnetic wave scattering and electron density waves in quantum dots; Absorbing and UPML boundary conditions; High order hierarchical Nédélec edge elements; High order discontinuous Galerkin (DG) and Yee finite difference time-domain methods; Finite element and plane wave frequency-domain methods for periodic structures; Generalized DG beam propagation method for optical waveguides; NEGF(Non-equilibrium Green's function) and Wigner kinetic methods for quantum transport; High order WENO and Godunov and central schemes for hydrodynamics transport; Vlasov-Fokker-Planck and PIC and constrained MHD transport in plasmas.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in