Higher moments of Banach space valued random variables / Svante Janson and Sten Kaijser.
Material type: TextSeries: Memoirs of the American Mathematical Society ; v 238, no 1127.Publication details: Providence : American Mathematical Society, 2015.Description: vii, 110 p. ; 26 cmISBN:- 9781470414658 (alk. paper)
- 510 23 Am512
Item type | Current library | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|
Books | ISI Library, Kolkata | 510 Am512 (Browse shelf(Opens below)) | Available | 136729 |
Includes bibliographical references.
1. Introduction --
2. Preliminaries --
3. Moments of Banach space valued random variables --
4. The approximation property --
5. Hilbert spaces --
6. $L^p(\mu)$--
7. $C(K)$ --
8. $c_0(S)$ --
9. $D[0,1]$ --
10. Uniqueness and convergence --
Appendix A. The reproducing Hilbert space --
Appendix B. The Zolotarev distances --
Bibliography.
The authors define the $k$:th moment of a Banach space valued random variable as the expectation of its $k$:th tensor power; thus the moment (if it exists) is an element of a tensor power of the original Banach space. The authors study both the projective and injective tensor products, and their relation.
There are no comments on this title.