Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Applied regression analysis and generalized linear models / John Fox.

By: Material type: TextTextPublication details: Los Angeles : SAGE, ©2016.Edition: 3rd edDescription: xxiv, 791 p. : illustrations ; 26 cmISBN:
  • 9781452205663
Subject(s): DDC classification:
  • 000SA.06 23 F792
Contents:
1. Statistical models and social science -- 2. What is regression analysis? -- 3. Examining data -- 4. Transforming data -- 5. Linear least-squares regression -- 6. Statistical inference for regression -- 7. Dummy-variable regression -- 8. Analysis of variance -- 9. Statistical theory for linear models -- 10. The vector geometry of linear models -- 11. Unusual and influential data -- 12. Diagnosing non-normality, nonconstrant error variance, and nonlinearity -- 13. Collinearity and its purported remedies -- 14. Logit and probit models for categorical response variables -- 15. Generalized linear models -- 16. Time-series regression and generalized least squares -- 17. Nonlinear regression -- 18. Nonparametric regression -- 19. Robust regression -- 20. Missing data in regression models -- 21. Bootstrapping regression models -- 22. Model selection, averaging, and validation -- 23. Linear mixed-effects models for hierarchical and longitudinal data -- 24. Generalized linear and nonlinear mixed-effects models -- Appendices.
Summary: Providing a modern treatment of regression analysis, linear models and closely related methods, this book introduces students to one of the most useful and widely used statistical tools for social research.
Tags from this library: No tags from this library for this title. Log in to add tags.

Includes bibliographical references and indexes.

1. Statistical models and social science --
2. What is regression analysis? --
3. Examining data --
4. Transforming data --
5. Linear least-squares regression --
6. Statistical inference for regression --
7. Dummy-variable regression --
8. Analysis of variance --
9. Statistical theory for linear models --
10. The vector geometry of linear models --
11. Unusual and influential data --
12. Diagnosing non-normality, nonconstrant error variance, and nonlinearity --
13. Collinearity and its purported remedies --
14. Logit and probit models for categorical response variables --
15. Generalized linear models --
16. Time-series regression and generalized least squares --
17. Nonlinear regression --
18. Nonparametric regression --
19. Robust regression --
20. Missing data in regression models --
21. Bootstrapping regression models --
22. Model selection, averaging, and validation --
23. Linear mixed-effects models for hierarchical and longitudinal data --
24. Generalized linear and nonlinear mixed-effects models --
Appendices.

Providing a modern treatment of regression analysis, linear models and closely related methods, this book introduces students to one of the most useful and widely used statistical tools for social research.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in