Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Rationality problem for algebraic tori / Akinari Hoshi and Aiichi Yamasaki.

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical Society ; v 248, no 1176.Publication details: Providence : American Mathematical Society, 2017.Description: v, 215 pages ; 26 cmISBN:
  • 9781470424091 (pbk :alk. paper)
Subject(s): DDC classification:
  • 510 23 Am512
Summary: The authors give the complete stably rational classification of algebraic tori of dimensions $4$ and $5$ over a field $k$. In particular, the stably rational classification of norm one tori whose Chevalley modules are of rank $4$ and $5$ is given.The authors show that there exist exactly $487$ (resp. $7$, resp. $216$) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension $4$, and there exist exactly $3051$ (resp. $25$, resp. $3003$) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension $5$.The authors make a procedure to compute a flabby resolution of a $G$-lattice effectively by using the computer algebra system GAP. Some algorithms may determine whether the flabby class of a $G$-lattice is invertible (resp. zero) or not. Using the algorithms, the suthors determine all the flabby and coflabby $G$-lattices of rank up to $6$ and verify that they are stably permutation. The authors also show that the Krull-Schmidt theorem for $G$-lattices holds when the rank $\leq 4$, and fails when the rank is $5$.
Tags from this library: No tags from this library for this title. Log in to add tags.

Includes bibliographical references.

The authors give the complete stably rational classification of algebraic tori of dimensions $4$ and $5$ over a field $k$. In particular, the stably rational classification of norm one tori whose Chevalley modules are of rank $4$ and $5$ is given.The authors show that there exist exactly $487$ (resp. $7$, resp. $216$) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension $4$, and there exist exactly $3051$ (resp. $25$, resp. $3003$) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension $5$.The authors make a procedure to compute a flabby resolution of a $G$-lattice effectively by using the computer algebra system GAP. Some algorithms may determine whether the flabby class of a $G$-lattice is invertible (resp. zero) or not. Using the algorithms, the suthors determine all the flabby and coflabby $G$-lattices of rank up to $6$ and verify that they are stably permutation. The authors also show that the Krull-Schmidt theorem for $G$-lattices holds when the rank $\leq 4$, and fails when the rank is $5$.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in