Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Handbook of big data analytics / [edited by] Wolfgang Karl Hardle, Henry Horng-Shing Lu and Xiaotong Shen.

Contributor(s): Material type: TextTextSeries: Springer handbooks of computational statisticsPublication details: New York, NY : Springer, 2018.Description: viii, 538 pages : illustrations (some color) ; 24 cmISBN:
  • 9783319182834
Subject(s): DDC classification:
  • 005.7 23 H264
Contents:
Preface.- Statistics, Statisticians, and the Internet of Things (John M. Jordan and Dennis K. J. Lin).- Cognitive Data Analysis for Big Data (Jing Shyr, Jane Chu and Mike Woods).- Statistical Leveraging Methods in Big Data (Xinlian Zhang, Rui Xie and Ping Ma).- Scattered Data and Aggregated Inference (Xiaoming Huo, Cheng Huang and Xuelei Sherry Ni).- Nonparametric Methods for Big Data Analytics (Hao Helen Zhang).- Finding Patterns in Time Series (James E. Gentle and Seunghye J. Wilson).- Variational Bayes for Hierarchical Mixture Models (Muting Wan, James G. Booth and Martin T. Wells).- Hypothesis Testing for High-Dimensional Data (Wei Biao Wu, Zhipeng Lou and Yuefeng Han).- High-Dimensional Classification (Hui Zou).- Analysis of High-Dimensional Regression Models Using Orthogonal Greedy Algorithms (Hsiang-Ling Hsu, Ching-Kang Ing and Tze Leung Lai).- Semi-Supervised Smoothing for Large Data Problems (Mark Vere Culp, Kenneth Joseph Ryan and George Michailidis).- Inverse Modeling: A Strategy to Cope with Non-Linearity (Qian Lin, Yang Li and Jun S. Liu).- Sufficient Dimension Reduction for Tensor Data (Yiwen Liu, Xin Xing and Wenxuan Zhong).- Compressive Sensing and Sparse Coding (Kevin Chen and H. T. Kung).- Bridging Density Functional Theory and Big Data Analytics with Applications (Chien-Chang Chen, Hung-Hui Juan, Meng-Yuan Tsai and Henry Horng-Shing Lu).- A Tutorial on Libra: R Package for the Linearized Bregman Algorithm in High-Dimensional Statistics (Jiechao Xiong, Feng Ruan and Yuan Yao).- Q3-D3-LSA: D3.js and generalized vector space models for Statistical Computing (Lukas Borke and Wolfgang Karl Hardle).- Functional Data Analysis for Big Data: A Case Study on California Temperature Trends (Pantelis Zenon Hadjipantelis and Hans-Georg Muller).- Bayesian Spatiotemporal Modeling for Detecting Neuronal Activation via Functional Magnetic Resonance Imaging (Martin Bezener, Lynn E. Eberly, John Hughes, Galin Jones and Donald R. Musgrove).- Construction of Tight Frames on Graphs and Application to Denoising (Franziska Goebel, Gilles Blanchard and Ulrike von Luxburg).- Beta-Boosted Ensemble for Big Credit Scoring Data (Maciej Zieba and Wolfgang Karl Hardle).-
Summary: Addressing a broad range of big data analytics in cross-disciplinary applications, this essential handbook focuses on the statistical prospects offered by recent developments in this field. The book is primarily intended for statisticians, computer experts, engineers and application developers interested in using big data analytics with statistics.
Tags from this library: No tags from this library for this title. Log in to add tags.

Preface.- Statistics, Statisticians, and the Internet of Things (John M. Jordan and Dennis K. J. Lin).- Cognitive Data Analysis for Big Data (Jing Shyr, Jane Chu and Mike Woods).- Statistical Leveraging Methods in Big Data (Xinlian Zhang, Rui Xie and Ping Ma).- Scattered Data and Aggregated Inference (Xiaoming Huo, Cheng Huang and Xuelei Sherry Ni).- Nonparametric Methods for Big Data Analytics (Hao Helen Zhang).- Finding Patterns in Time Series (James E. Gentle and Seunghye J. Wilson).- Variational Bayes for Hierarchical Mixture Models (Muting Wan, James G. Booth and Martin T. Wells).- Hypothesis Testing for High-Dimensional Data (Wei Biao Wu, Zhipeng Lou and Yuefeng Han).- High-Dimensional Classification (Hui Zou).- Analysis of High-Dimensional Regression Models Using Orthogonal Greedy Algorithms (Hsiang-Ling Hsu, Ching-Kang Ing and Tze Leung Lai).- Semi-Supervised Smoothing for Large Data Problems (Mark Vere Culp, Kenneth Joseph Ryan and George Michailidis).- Inverse Modeling: A Strategy to Cope with Non-Linearity (Qian Lin, Yang Li and Jun S. Liu).- Sufficient Dimension Reduction for Tensor Data (Yiwen Liu, Xin Xing and Wenxuan Zhong).- Compressive Sensing and Sparse Coding (Kevin Chen and H. T. Kung).- Bridging Density Functional Theory and Big Data Analytics with Applications (Chien-Chang Chen, Hung-Hui Juan, Meng-Yuan Tsai and Henry Horng-Shing Lu).- A Tutorial on Libra: R Package for the Linearized Bregman Algorithm in High-Dimensional Statistics (Jiechao Xiong, Feng Ruan and Yuan Yao).- Q3-D3-LSA: D3.js and generalized vector space models for Statistical Computing (Lukas Borke and Wolfgang Karl Hardle).- Functional Data Analysis for Big Data: A Case Study on California Temperature Trends (Pantelis Zenon Hadjipantelis and Hans-Georg Muller).- Bayesian Spatiotemporal Modeling for Detecting Neuronal Activation via Functional Magnetic Resonance Imaging (Martin Bezener, Lynn E. Eberly, John Hughes, Galin Jones and Donald R. Musgrove).- Construction of Tight Frames on Graphs and Application to Denoising (Franziska Goebel, Gilles Blanchard and Ulrike von Luxburg).- Beta-Boosted Ensemble for Big Credit Scoring Data (Maciej Zieba and Wolfgang Karl Hardle).-

Addressing a broad range of big data analytics in cross-disciplinary applications, this essential handbook focuses on the statistical prospects offered by recent developments in this field. The book is primarily intended for statisticians, computer experts, engineers and application developers interested in using big data analytics with statistics.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in