Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Normal view MARC view ISBD view

A First Course in Harmonic Analysis [electronic resource] / by Anton Deitmar.

By: Deitmar, Anton [author.].
Contributor(s): SpringerLink (Online service).
Material type: TextTextSeries: Universitext: Publisher: New York, NY : Springer New York, 2005Edition: Second Edition.Description: XI, 192 p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9780387275611.Subject(s): Functional analysis | Topology | Harmonic analysis | Topological Groups | Global analysis (Mathematics) | Functional Analysis | Topology | Abstract Harmonic Analysis | Topological Groups, Lie Groups | AnalysisAdditional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification: 515.7 Online resources: Click here to access online
Contents:
Fourier Analysis -- Fourier Series -- Hilbert Spaces -- The Fourier Transform -- Distributions -- LCA Groups -- Finite Abelian Groups -- LCA Groups -- The Dual Group -- Plancherel Theorem -- Noncommutative Groups -- Matrix Groups -- The Representations of SU(2) -- The Peter-Weyl Theorem -- The Heisenberg Group.
In: Springer eBooksSummary: From the reviews of the first edition: "This lovely book is intended as a primer in harmonic analysis at the undergraduate level. All the central concepts of harmonic analysis are introduced using Riemann integral and metric spaces only. The exercises at the end of each chapter are interesting and challenging..." Sanjiv Kumar Gupta for MathSciNet "... In this well-written textbook the central concepts of Harmonic Analysis are explained in an enjoyable way, while using very little technical background. Quite surprisingly this approach works. It is not an exaggeration that each undergraduate student interested in and each professor teaching Harmonic Analysis will benefit from the streamlined and direct approach of this book." Ferenc Móricz for Acta Scientiarum Mathematicarum This book is a primer in harmonic analysis using an elementary approach. Its first aim is to provide an introduction to Fourier analysis, leading up to the Poisson Summation Formula. Secondly, it makes the reader aware of the fact that both, the Fourier series and the Fourier transform, are special cases of a more general theory arising in the context of locally compact abelian groups. The third goal of this book is to introduce the reader to the techniques used in harmonic analysis of noncommutative groups. There are two new chapters in this new edition. One on distributions will complete the set of real variable methods introduced in the first part. The other on the Heisenberg Group provides an example of a group that is neither compact nor abelian, yet is simple enough to easily deduce the Plancherel Theorem. Professor Deitmar is Professor of Mathematics at the University of T"ubingen, Germany. He is a former Heisenberg fellow and has taught in the U.K. for some years. In his leisure time he enjoys hiking in the mountains and practicing Aikido.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Call number Status Date due Barcode Item holds
E-BOOKS E-BOOKS ISI Library, Kolkata
 
Available EB907
Total holds: 0

Fourier Analysis -- Fourier Series -- Hilbert Spaces -- The Fourier Transform -- Distributions -- LCA Groups -- Finite Abelian Groups -- LCA Groups -- The Dual Group -- Plancherel Theorem -- Noncommutative Groups -- Matrix Groups -- The Representations of SU(2) -- The Peter-Weyl Theorem -- The Heisenberg Group.

From the reviews of the first edition: "This lovely book is intended as a primer in harmonic analysis at the undergraduate level. All the central concepts of harmonic analysis are introduced using Riemann integral and metric spaces only. The exercises at the end of each chapter are interesting and challenging..." Sanjiv Kumar Gupta for MathSciNet "... In this well-written textbook the central concepts of Harmonic Analysis are explained in an enjoyable way, while using very little technical background. Quite surprisingly this approach works. It is not an exaggeration that each undergraduate student interested in and each professor teaching Harmonic Analysis will benefit from the streamlined and direct approach of this book." Ferenc Móricz for Acta Scientiarum Mathematicarum This book is a primer in harmonic analysis using an elementary approach. Its first aim is to provide an introduction to Fourier analysis, leading up to the Poisson Summation Formula. Secondly, it makes the reader aware of the fact that both, the Fourier series and the Fourier transform, are special cases of a more general theory arising in the context of locally compact abelian groups. The third goal of this book is to introduce the reader to the techniques used in harmonic analysis of noncommutative groups. There are two new chapters in this new edition. One on distributions will complete the set of real variable methods introduced in the first part. The other on the Heisenberg Group provides an example of a group that is neither compact nor abelian, yet is simple enough to easily deduce the Plancherel Theorem. Professor Deitmar is Professor of Mathematics at the University of T"ubingen, Germany. He is a former Heisenberg fellow and has taught in the U.K. for some years. In his leisure time he enjoys hiking in the mountains and practicing Aikido.

There are no comments for this item.

Log in to your account to post a comment.

Other editions of this work

First course in harmonic analysis by Deitmar Anton
First course in harmonic analysis by Deitmar Anton
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in


Visitor Counter