Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Cyclotomic Fields and Zeta Values [electronic resource] / by J. Coates, R. Sujatha.

By: Contributor(s): Material type: TextTextSeries: Springer Monographs in MathematicsPublisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006Description: X, 116 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540330691
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 512.7 23
LOC classification:
  • QA241-247.5
Online resources:
Contents:
Cyclotomic Fields -- Local Units -- Iwasawa Algebras and p-adic Measures -- Cyclotomic Units and Iwasawa's Theorem -- Euler Systems -- Main Conjecture.
In: Springer eBooksSummary: Cyclotomic fields have always occupied a central place in number theory, and the so called "main conjecture" on cyclotomic fields is arguably the deepest and most beautiful theorem known about them. It is also the simplest example of a vast array of subsequent, unproven "main conjectures'' in modern arithmetic geometry involving the arithmetic behaviour of motives over p-adic Lie extensions of number fields. These main conjectures are concerned with what one might loosely call the exact formulae of number theory which conjecturally link the special values of zeta and L-functions to purely arithmetic expressions (the most celebrated example being the conjecture of Birch and Swinnerton-Dyer for elliptic curves). Written by two leading workers in the field, this short and elegant book presents in full detail the simplest proof of the "main conjecture'' for cyclotomic fields . Its motivation stems not only from the inherent beauty of the subject, but also from the wider arithmetic interest of these questions. The masterly exposition is intended to be accessible to both graduate students and non-experts in Iwasawa theory.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
E-BOOKS ISI Library, Kolkata Not for loan EB1265
Total holds: 0

Cyclotomic Fields -- Local Units -- Iwasawa Algebras and p-adic Measures -- Cyclotomic Units and Iwasawa's Theorem -- Euler Systems -- Main Conjecture.

Cyclotomic fields have always occupied a central place in number theory, and the so called "main conjecture" on cyclotomic fields is arguably the deepest and most beautiful theorem known about them. It is also the simplest example of a vast array of subsequent, unproven "main conjectures'' in modern arithmetic geometry involving the arithmetic behaviour of motives over p-adic Lie extensions of number fields. These main conjectures are concerned with what one might loosely call the exact formulae of number theory which conjecturally link the special values of zeta and L-functions to purely arithmetic expressions (the most celebrated example being the conjecture of Birch and Swinnerton-Dyer for elliptic curves). Written by two leading workers in the field, this short and elegant book presents in full detail the simplest proof of the "main conjecture'' for cyclotomic fields . Its motivation stems not only from the inherent beauty of the subject, but also from the wider arithmetic interest of these questions. The masterly exposition is intended to be accessible to both graduate students and non-experts in Iwasawa theory.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in