Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Fuchsian Reduction [electronic resource] : Applications to Geometry, Cosmology, and Mathematical Physics / by Satyanad Kichenassamy.

By: Contributor(s): Material type: TextTextSeries: Progress in Nonlinear Differential Equations and Their Applications ; 71Publisher: Boston, MA : Birkhäuser Boston, 2007Description: XV, 289 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780817646370
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 516 23
LOC classification:
  • QA440-699
Online resources:
Contents:
Fuchsian Reduction -- Formal Series -- General Reduction Methods -- Theory of Fuchsian Partial Di?erential Equations -- Convergent Series Solutions of Fuchsian Initial-Value Problems -- Fuchsian Initial-Value Problems in Sobolev Spaces -- Solution of Fuchsian Elliptic Boundary-Value Problems -- Applications -- Applications in Astronomy -- Applications in General Relativity -- Applications in Differential Geometry -- Applications to Nonlinear Waves -- Boundary Blowup for Nonlinear Elliptic Equations -- Background Results -- Distance Function and Hölder Spaces -- Nash–Moser Inverse Function Theorem.
In: Springer eBooksSummary: Fuchsian reduction is a method for representing solutions of nonlinear PDEs near singularities. The technique has multiple applications including soliton theory, Einstein's equations and cosmology, stellar models, laser collapse, conformal geometry and combustion. Developed in the 1990s for semilinear wave equations, Fuchsian reduction research has grown in response to those problems in pure and applied mathematics where numerical computations fail. This work unfolds systematically in four parts, interweaving theory and applications. The case studies examined in Part III illustrate the impact of reduction techniques, and may serve as prototypes for future new applications. In the same spirit, most chapters include a problem section. Background results and solutions to selected problems close the volume. This book can be used as a text in graduate courses in pure or applied analysis, or as a resource for researchers working with singularities in geometry and mathematical physics.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Fuchsian Reduction -- Formal Series -- General Reduction Methods -- Theory of Fuchsian Partial Di?erential Equations -- Convergent Series Solutions of Fuchsian Initial-Value Problems -- Fuchsian Initial-Value Problems in Sobolev Spaces -- Solution of Fuchsian Elliptic Boundary-Value Problems -- Applications -- Applications in Astronomy -- Applications in General Relativity -- Applications in Differential Geometry -- Applications to Nonlinear Waves -- Boundary Blowup for Nonlinear Elliptic Equations -- Background Results -- Distance Function and Hölder Spaces -- Nash–Moser Inverse Function Theorem.

Fuchsian reduction is a method for representing solutions of nonlinear PDEs near singularities. The technique has multiple applications including soliton theory, Einstein's equations and cosmology, stellar models, laser collapse, conformal geometry and combustion. Developed in the 1990s for semilinear wave equations, Fuchsian reduction research has grown in response to those problems in pure and applied mathematics where numerical computations fail. This work unfolds systematically in four parts, interweaving theory and applications. The case studies examined in Part III illustrate the impact of reduction techniques, and may serve as prototypes for future new applications. In the same spirit, most chapters include a problem section. Background results and solutions to selected problems close the volume. This book can be used as a text in graduate courses in pure or applied analysis, or as a resource for researchers working with singularities in geometry and mathematical physics.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in