Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Modeling with Itô Stochastic Differential Equations [electronic resource] / by E. Allen.

By: Contributor(s): Material type: TextTextSeries: Mathematical Modelling: Theory and Applications ; 22Publisher: Dordrecht : Springer Netherlands, 2007Description: XII, 230 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781402059537
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 519.2 23
LOC classification:
  • QA273.A1-274.9
  • QA274-274.9
Online resources:
Contents:
Random Variables -- Stochastic Processes -- Stochastic Integration -- Stochastic Differential Equations -- Modeling.
In: Springer eBooksSummary: Dynamical systems with random influences occur throughout the physical, biological, and social sciences. By carefully studying a randomly varying system over a small time interval, a discrete stochastic process model can be constructed. Next, letting the time interval shrink to zero, an Ito stochastic differential equation model for the dynamical system is obtained. This modeling procedure is thoroughly explained and illustrated for randomly varying systems in population biology, chemistry, physics, engineering, and finance. Introductory chapters present the fundamental concepts of random variables, stochastic processes, stochastic integration, and stochastic differential equations. These concepts are explained in a Hilbert space setting which unifies and simplifies the presentation. Computer programs, given throughout the text, are useful in solving representative stochastic problems. Analytical and computational exercises are provided in each chapter that complement the material in the text. Modeling with Itô Stochastic Differential Equations is useful for researchers and graduate students. As a textbook for a graduate course, prerequisites include probability theory, differential equations, intermediate analysis, and some knowledge of scientific programming.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Random Variables -- Stochastic Processes -- Stochastic Integration -- Stochastic Differential Equations -- Modeling.

Dynamical systems with random influences occur throughout the physical, biological, and social sciences. By carefully studying a randomly varying system over a small time interval, a discrete stochastic process model can be constructed. Next, letting the time interval shrink to zero, an Ito stochastic differential equation model for the dynamical system is obtained. This modeling procedure is thoroughly explained and illustrated for randomly varying systems in population biology, chemistry, physics, engineering, and finance. Introductory chapters present the fundamental concepts of random variables, stochastic processes, stochastic integration, and stochastic differential equations. These concepts are explained in a Hilbert space setting which unifies and simplifies the presentation. Computer programs, given throughout the text, are useful in solving representative stochastic problems. Analytical and computational exercises are provided in each chapter that complement the material in the text. Modeling with Itô Stochastic Differential Equations is useful for researchers and graduate students. As a textbook for a graduate course, prerequisites include probability theory, differential equations, intermediate analysis, and some knowledge of scientific programming.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in