Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

An Introduction to Scientific Computing [electronic resource] : Twelve Computational Projects Solved with MATLAB / edited by Ionut Danaila, Pascal Joly, Sidi Mahmoud Kaber, Marie Postel.

Contributor(s): Material type: TextTextPublisher: New York, NY : Springer New York, 2007Description: XVI, 294 p. 135 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780387491592
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 519 23
LOC classification:
  • T57-57.97
Online resources:
Contents:
Numerical Approximation of Model Partial Differential Equations -- Nonlinear Differential Equations: Application to Chemical Kinetics -- Polynomial Approximation -- Solving an Advection-Diffusion Equation by a Finite Element Method -- Solving a Differential Equation by a Spectral Method -- Signal Processing: Multiresolution Analysis -- Elasticity: Elastic Deformation of a Thin Plate -- Domain Decomposition Using a Schwarz Method -- Geometrical Design: Bézier Curves and Surfaces -- Gas Dynamics: The Riemann Problem and Discontinuous Solutions: Application to the Shock Tube Problem -- Thermal Engineering: Optimization of an Industrial Furnace -- Fluid Dynamics: Solving the Two-Dimensional Navier-Stokes Equations.
In: Springer eBooksSummary: This book provides twelve computational projects aimed at numerically solving problems from a broad range of applications including Fluid Mechanics, Chemistry, Elasticity, Thermal Science, Computer Aided Design, Signal and Image Processing. For each project the reader is guided through the typical steps of scientific computing from physical and mathematical description of the problem, to numerical formulation and programming and finally to critical discussion of numerical results. Considerable emphasis is placed on practical issues of computational methods. The last section of each project contains the solutions to all proposed exercises and guides the reader in using the MATLAB scripts. The mathematical framework provides a basic foundation in the subject of numerical analysis of partial differential equations and main discretization techniques, such as finite differences, finite elements, spectral methods and wavelets). The book is primarily intended as a graduate-level text in applied mathematics, but it may also be used by students in engineering or physical sciences. It will also be a useful reference for researchers and practicing engineers.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Numerical Approximation of Model Partial Differential Equations -- Nonlinear Differential Equations: Application to Chemical Kinetics -- Polynomial Approximation -- Solving an Advection-Diffusion Equation by a Finite Element Method -- Solving a Differential Equation by a Spectral Method -- Signal Processing: Multiresolution Analysis -- Elasticity: Elastic Deformation of a Thin Plate -- Domain Decomposition Using a Schwarz Method -- Geometrical Design: Bézier Curves and Surfaces -- Gas Dynamics: The Riemann Problem and Discontinuous Solutions: Application to the Shock Tube Problem -- Thermal Engineering: Optimization of an Industrial Furnace -- Fluid Dynamics: Solving the Two-Dimensional Navier-Stokes Equations.

This book provides twelve computational projects aimed at numerically solving problems from a broad range of applications including Fluid Mechanics, Chemistry, Elasticity, Thermal Science, Computer Aided Design, Signal and Image Processing. For each project the reader is guided through the typical steps of scientific computing from physical and mathematical description of the problem, to numerical formulation and programming and finally to critical discussion of numerical results. Considerable emphasis is placed on practical issues of computational methods. The last section of each project contains the solutions to all proposed exercises and guides the reader in using the MATLAB scripts. The mathematical framework provides a basic foundation in the subject of numerical analysis of partial differential equations and main discretization techniques, such as finite differences, finite elements, spectral methods and wavelets). The book is primarily intended as a graduate-level text in applied mathematics, but it may also be used by students in engineering or physical sciences. It will also be a useful reference for researchers and practicing engineers.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in