Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Parameter Estimation in Stochastic Differential Equations [electronic resource] / by Jaya P. N. Bishwal.

By: Contributor(s): Material type: TextTextSeries: Lecture Notes in Mathematics ; 1923Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008Description: XIV, 268 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540744481
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 515 23
LOC classification:
  • QA299.6-433
Online resources:
Contents:
Continuous Sampling -- Parametric Stochastic Differential Equations -- Rates of Weak Convergence of Estimators in Homogeneous Diffusions -- Large Deviations of Estimators in Homogeneous Diffusions -- Local Asymptotic Mixed Normality for Nonhomogeneous Diffusions -- Bayes and Sequential Estimation in Stochastic PDEs -- Maximum Likelihood Estimation in Fractional Diffusions -- Discrete Sampling -- Approximate Maximum Likelihood Estimation in Nonhomogeneous Diffusions -- Rates of Weak Convergence of Estimators in the Ornstein-Uhlenbeck Process -- Local Asymptotic Normality for Discretely Observed Homogeneous Diffusions -- Estimating Function for Discretely Observed Homogeneous Diffusions.
In: Springer eBooksSummary: Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modelling complex phenomena and making beautiful decisions. The subject has attracted researchers from several areas of mathematics and other related fields like economics and finance. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods. Useful because of the current availability of high frequency data is the study of refined asymptotic properties of several estimators when the observation time length is large and the observation time interval is small. Also space time white noise driven models, useful for spatial data, and more sophisticated non-Markovian and non-semimartingale models like fractional diffusions that model the long memory phenomena are examined in this volume.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Continuous Sampling -- Parametric Stochastic Differential Equations -- Rates of Weak Convergence of Estimators in Homogeneous Diffusions -- Large Deviations of Estimators in Homogeneous Diffusions -- Local Asymptotic Mixed Normality for Nonhomogeneous Diffusions -- Bayes and Sequential Estimation in Stochastic PDEs -- Maximum Likelihood Estimation in Fractional Diffusions -- Discrete Sampling -- Approximate Maximum Likelihood Estimation in Nonhomogeneous Diffusions -- Rates of Weak Convergence of Estimators in the Ornstein-Uhlenbeck Process -- Local Asymptotic Normality for Discretely Observed Homogeneous Diffusions -- Estimating Function for Discretely Observed Homogeneous Diffusions.

Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modelling complex phenomena and making beautiful decisions. The subject has attracted researchers from several areas of mathematics and other related fields like economics and finance. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods. Useful because of the current availability of high frequency data is the study of refined asymptotic properties of several estimators when the observation time length is large and the observation time interval is small. Also space time white noise driven models, useful for spatial data, and more sophisticated non-Markovian and non-semimartingale models like fractional diffusions that model the long memory phenomena are examined in this volume.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in