Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Vanishing and Finiteness Results in Geometric Analysis [electronic resource] : A Generalization of the Bochner Technique / by Stefano Pigola, Alberto G. Setti, Marco Rigoli.

By: Contributor(s): Material type: TextTextSeries: Progress in Mathematics ; 266Publisher: Basel : Birkhäuser Basel, 2008Description: XIV, 282 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783764386429
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 516.36 23
LOC classification:
  • QA641-670
Online resources:
Contents:
Harmonic, pluriharmonic, holomorphic maps and basic Hermitian and Kählerian geometry -- Comparison Results -- Review of spectral theory -- Vanishing results -- A finite-dimensionality result -- Applications to harmonic maps -- Some topological applications -- Constancy of holomorphic maps and the structure of complete Kähler manifolds -- Splitting and gap theorems in the presence of a Poincaré-Sobolev inequality.
In: Springer eBooksSummary: This book presents very recent results involving an extensive use of analytical tools in the study of geometrical and topological properties of complete Riemannian manifolds. It analyzes in detail an extension of the Bochner technique to the non compact setting, yielding conditions which ensure that solutions of geometrically significant differential equations either are trivial (vanishing results) or give rise to finite dimensional vector spaces (finiteness results). The book develops a range of methods from spectral theory and qualitative properties of solutions of PDEs to comparison theorems in Riemannian geometry and potential theory. All needed tools are described in detail, often with an original approach. Some of the applications presented concern the topology at infinity of submanifolds, Lp cohomology, metric rigidity of manifolds with positive spectrum, and structure theorems for Kähler manifolds. The book is essentially self-contained and supplies in an original presentation the necessary background material not easily available in book form.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Harmonic, pluriharmonic, holomorphic maps and basic Hermitian and Kählerian geometry -- Comparison Results -- Review of spectral theory -- Vanishing results -- A finite-dimensionality result -- Applications to harmonic maps -- Some topological applications -- Constancy of holomorphic maps and the structure of complete Kähler manifolds -- Splitting and gap theorems in the presence of a Poincaré-Sobolev inequality.

This book presents very recent results involving an extensive use of analytical tools in the study of geometrical and topological properties of complete Riemannian manifolds. It analyzes in detail an extension of the Bochner technique to the non compact setting, yielding conditions which ensure that solutions of geometrically significant differential equations either are trivial (vanishing results) or give rise to finite dimensional vector spaces (finiteness results). The book develops a range of methods from spectral theory and qualitative properties of solutions of PDEs to comparison theorems in Riemannian geometry and potential theory. All needed tools are described in detail, often with an original approach. Some of the applications presented concern the topology at infinity of submanifolds, Lp cohomology, metric rigidity of manifolds with positive spectrum, and structure theorems for Kähler manifolds. The book is essentially self-contained and supplies in an original presentation the necessary background material not easily available in book form.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in