Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Introduzione alla finanza matematica [electronic resource] : Derivati, prezzi e coperture / by Riccardo Cesari.

By: Contributor(s): Material type: TextTextPublisher: Milano : Springer Milan, 2009Description: XVIII, 462 pagg. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9788847008205
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 510 23
LOC classification:
  • QA1-939
Online resources:
Contents:
Derivati e mercati -- La struttura per scadenza dei tassi d’interesse e i fondamenti del pricing di non arbitraggio -- Forward -- Futures -- Floaters -- Swaps -- Opzioni plain vanilla -- Opzioni e modelli non standard -- Opzioni su tassi d’interesse -- Opzioni esotiche -- Opzioni nascoste e titoli strutturati: garanzie, clausole, opportunità -- Procedure numeriche.
In: Springer eBooksSummary: Il libro illustra l'approccio della moderna finanza matematica al caso dei titoli derivati, certamente gli strumenti più innovativi e più diffusi del mercato finanziario. La metodologia detta di non arbitraggio (o di Black e Scholes) viene illustrata sia in termini euristici sia in termini formali e applicata per fornire la guida al pricing e all'hedging dei titoli c.d. derivati in quanto dipendenti da altri titoli: forward e futures, floaters, swap, opzioni sia semplici sia esotiche, titoli strutturati e opzioni nascoste, di mercato azionario, di tasso d'interesse, di cambio, di credito etc. I derivati sono analizzati sia per le finalità speculative sia per quelle di copertura dei rischi. Grafici, esempi numerici, riferimenti normativi (Consob) ed esercizi aiutano il lettore alla comprensione dei diversi strumenti considerati. I modelli teorici tra i più noti in letteratura sono presi in esame, analizzati passo per passo e messi a confronto. La trattazione si presta a un doppio livello di lettura: un livello semplice e introduttivo, che richiede solo nozioni matematiche di base e punta alla comprensione pratica dei concetti e degli strumenti e un livello più avanzato che utilizza il calcolo stocastico e alcuni risultati fondamentali della probabilità, della matematica e della statistica. Il primo livello è pensato per gli insegnamenti universitari della laurea triennale mentre il secondo livello si rivolge ai corsi di laurea magistrale e specialistica, di master e dottorato. Un'appendice sui risultati più avanzati, sui processi stocastici, le procedure numeriche e la simulazione Monte Carlo rendono il testo relativamente autosufficiente.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Derivati e mercati -- La struttura per scadenza dei tassi d’interesse e i fondamenti del pricing di non arbitraggio -- Forward -- Futures -- Floaters -- Swaps -- Opzioni plain vanilla -- Opzioni e modelli non standard -- Opzioni su tassi d’interesse -- Opzioni esotiche -- Opzioni nascoste e titoli strutturati: garanzie, clausole, opportunità -- Procedure numeriche.

Il libro illustra l'approccio della moderna finanza matematica al caso dei titoli derivati, certamente gli strumenti più innovativi e più diffusi del mercato finanziario. La metodologia detta di non arbitraggio (o di Black e Scholes) viene illustrata sia in termini euristici sia in termini formali e applicata per fornire la guida al pricing e all'hedging dei titoli c.d. derivati in quanto dipendenti da altri titoli: forward e futures, floaters, swap, opzioni sia semplici sia esotiche, titoli strutturati e opzioni nascoste, di mercato azionario, di tasso d'interesse, di cambio, di credito etc. I derivati sono analizzati sia per le finalità speculative sia per quelle di copertura dei rischi. Grafici, esempi numerici, riferimenti normativi (Consob) ed esercizi aiutano il lettore alla comprensione dei diversi strumenti considerati. I modelli teorici tra i più noti in letteratura sono presi in esame, analizzati passo per passo e messi a confronto. La trattazione si presta a un doppio livello di lettura: un livello semplice e introduttivo, che richiede solo nozioni matematiche di base e punta alla comprensione pratica dei concetti e degli strumenti e un livello più avanzato che utilizza il calcolo stocastico e alcuni risultati fondamentali della probabilità, della matematica e della statistica. Il primo livello è pensato per gli insegnamenti universitari della laurea triennale mentre il secondo livello si rivolge ai corsi di laurea magistrale e specialistica, di master e dottorato. Un'appendice sui risultati più avanzati, sui processi stocastici, le procedure numeriche e la simulazione Monte Carlo rendono il testo relativamente autosufficiente.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in