Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

The Center and Cyclicity Problems [electronic resource] : A Computational Algebra Approach / by Douglas Shafer, Valery Romanovski.

By: Contributor(s): Material type: TextTextPublisher: Boston : Birkhäuser Boston, 2009Description: XII, 330 p. 4 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780817647278
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 515.39 23
  • 515.48 23
LOC classification:
  • QA313
Online resources:
Contents:
Polynomial Ideals and Their Varieties -- Stability and Normal Forms -- The Center Problem -- The Isochronicity and Linearizability Problems -- Invariants of the Rotation Group -- Bifurcations of Limit Cycles and Critical Periods.
In: Springer eBooksSummary: In the last three decades, advances in methods for investigating polynomial ideals and their varieties have provided new possibilities for approaching two long-standing problems in the theory of differential equations: the Poincaré center problem and the cyclicity problem (the problem of bifurcation of limit cycles from singular trajectories). Using a computational algebra approach, this work addresses the center and cyclicity problems as behaviors of dynamical systems and families of polynomial systems. The text first lays the groundwork for computational algebra and gives the main properties of ideals in polynomial rings and their affine varieties; this is followed by a discussion regarding the theory of normal forms and stability of differential equations. The center and cyclicity problems are then explored in detail. The book contains numerous examples, pseudocode displays of all the computational algorithms, historical notes, nearly two hundred exercises, and an extensive bibliography. Completely self-contained, it is thus suitable mainly as a textbook for a graduate course in the subject but also as a reference for researchers.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Polynomial Ideals and Their Varieties -- Stability and Normal Forms -- The Center Problem -- The Isochronicity and Linearizability Problems -- Invariants of the Rotation Group -- Bifurcations of Limit Cycles and Critical Periods.

In the last three decades, advances in methods for investigating polynomial ideals and their varieties have provided new possibilities for approaching two long-standing problems in the theory of differential equations: the Poincaré center problem and the cyclicity problem (the problem of bifurcation of limit cycles from singular trajectories). Using a computational algebra approach, this work addresses the center and cyclicity problems as behaviors of dynamical systems and families of polynomial systems. The text first lays the groundwork for computational algebra and gives the main properties of ideals in polynomial rings and their affine varieties; this is followed by a discussion regarding the theory of normal forms and stability of differential equations. The center and cyclicity problems are then explored in detail. The book contains numerous examples, pseudocode displays of all the computational algorithms, historical notes, nearly two hundred exercises, and an extensive bibliography. Completely self-contained, it is thus suitable mainly as a textbook for a graduate course in the subject but also as a reference for researchers.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in