Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Normal view MARC view ISBD view

Partial Differential Equations in Action [electronic resource] : From Modelling to Theory / by Sandro Salsa.

By: Salsa, Sandro [author.].
Contributor(s): SpringerLink (Online service).
Material type: TextTextSeries: Universitext: Publisher: Milano : Springer Milan, 2009Description: XV, 556 p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9788847007529.Subject(s): Differential equations, partial | Partial Differential EquationsAdditional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification: 515.353 Online resources: Click here to access online
Contents:
Diffusion -- The Laplace Equation -- Scalar Conservation Laws and First Order Equations -- Waves and Vibrations -- Elements of Functional Analysis -- Distributions and Sobolev Spaces -- Variational Formulation of Elliptic Problems -- Weak Formulation of Evolution Problems.
In: Springer eBooksSummary: This book is designed as an advanced undergraduate or a first-year graduate course for students from various disciplines like applied mathematics, physics, engineering. The main purpose is on the one hand to train the students to appreciate the interplay between theory and modelling in problems arising in the applied sciences; on the other hand to give them a solid theoretical background for numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first one has a rather elementary character with the goal of developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. Ideas and connections with concrete aspects are emphasized whenever possible, in order to provide intuition and feeling for the subject. For this part, a knowledge of advanced calculus and ordinary differential equations is required. Also, the repeated use of the method of separation of variables assumes some basic results from the theory of Fourier series, which are summarized in an appendix. The main topic of the second part is the development of Hilbert space methods for the variational formulation and analysis of linear boundary and initial-boundary value problems\emph{. }% Given the abstract nature of these chapters, an effort has been made to provide intuition and motivation for the various concepts and results. The understanding of these topics requires some basic knowledge of Lebesgue measure and integration, summarized in another appendix. At the end of each chapter, a number of exercises at different level of complexity is included. The most demanding problems are supplied with answers or hints. The exposition if flexible enough to allow substantial changes without compromising the comprehension and to facilitate a selection of topics for a one or two semester course.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Diffusion -- The Laplace Equation -- Scalar Conservation Laws and First Order Equations -- Waves and Vibrations -- Elements of Functional Analysis -- Distributions and Sobolev Spaces -- Variational Formulation of Elliptic Problems -- Weak Formulation of Evolution Problems.

This book is designed as an advanced undergraduate or a first-year graduate course for students from various disciplines like applied mathematics, physics, engineering. The main purpose is on the one hand to train the students to appreciate the interplay between theory and modelling in problems arising in the applied sciences; on the other hand to give them a solid theoretical background for numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first one has a rather elementary character with the goal of developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. Ideas and connections with concrete aspects are emphasized whenever possible, in order to provide intuition and feeling for the subject. For this part, a knowledge of advanced calculus and ordinary differential equations is required. Also, the repeated use of the method of separation of variables assumes some basic results from the theory of Fourier series, which are summarized in an appendix. The main topic of the second part is the development of Hilbert space methods for the variational formulation and analysis of linear boundary and initial-boundary value problems\emph{. }% Given the abstract nature of these chapters, an effort has been made to provide intuition and motivation for the various concepts and results. The understanding of these topics requires some basic knowledge of Lebesgue measure and integration, summarized in another appendix. At the end of each chapter, a number of exercises at different level of complexity is included. The most demanding problems are supplied with answers or hints. The exposition if flexible enough to allow substantial changes without compromising the comprehension and to facilitate a selection of topics for a one or two semester course.

There are no comments for this item.

Log in to your account to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in


Visitor Counter