Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication [electronic resource] / by Christian Rohde.

By: Contributor(s): Material type: TextTextSeries: Lecture Notes in Mathematics ; 1975Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009Description: IX, 228 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642006395
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 516.35 23
LOC classification:
  • QA564-609
Online resources:
Contents:
An Introduction to Hodge Structures and Shimura Varieties -- Cyclic Covers of the Projective Line -- Some Preliminaries for Families of Cyclic Covers -- The Galois Group Decomposition of the Hodge Structure -- The Computation of the Hodge Group -- Examples of Families with Dense Sets of Complex Multiplication Fibers -- The Construction of Calabi-Yau Manifolds with Complex Multiplication -- The Degree 3 Case -- Other Examples and Variations -- Examples of Families of 3-manifolds and their Invariants -- Maximal Families of CMCY Type.
In: Springer eBooksSummary: The main goal of this book is the construction of families of Calabi-Yau 3-manifolds with dense sets of complex multiplication fibers. The new families are determined by combining and generalizing two methods. Firstly, the method of E. Viehweg and K. Zuo, who have constructed a deformation of the Fermat quintic with a dense set of CM fibers by a tower of cyclic coverings. Using this method, new families of K3 surfaces with dense sets of CM fibers and involutions are obtained. Secondly, the construction method of the Borcea-Voisin mirror family, which in the case of the author's examples yields families of Calabi-Yau 3-manifolds with dense sets of CM fibers, is also utilized. Moreover fibers with complex multiplication of these new families are also determined. This book was written for young mathematicians, physicists and also for experts who are interested in complex multiplication and varieties with complex multiplication. The reader is introduced to generic Mumford-Tate groups and Shimura data, which are among the main tools used here. The generic Mumford-Tate groups of families of cyclic covers of the projective line are computed for a broad range of examples.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
E-BOOKS ISI Library, Kolkata Not for loan EB1606
Total holds: 0

An Introduction to Hodge Structures and Shimura Varieties -- Cyclic Covers of the Projective Line -- Some Preliminaries for Families of Cyclic Covers -- The Galois Group Decomposition of the Hodge Structure -- The Computation of the Hodge Group -- Examples of Families with Dense Sets of Complex Multiplication Fibers -- The Construction of Calabi-Yau Manifolds with Complex Multiplication -- The Degree 3 Case -- Other Examples and Variations -- Examples of Families of 3-manifolds and their Invariants -- Maximal Families of CMCY Type.

The main goal of this book is the construction of families of Calabi-Yau 3-manifolds with dense sets of complex multiplication fibers. The new families are determined by combining and generalizing two methods. Firstly, the method of E. Viehweg and K. Zuo, who have constructed a deformation of the Fermat quintic with a dense set of CM fibers by a tower of cyclic coverings. Using this method, new families of K3 surfaces with dense sets of CM fibers and involutions are obtained. Secondly, the construction method of the Borcea-Voisin mirror family, which in the case of the author's examples yields families of Calabi-Yau 3-manifolds with dense sets of CM fibers, is also utilized. Moreover fibers with complex multiplication of these new families are also determined. This book was written for young mathematicians, physicists and also for experts who are interested in complex multiplication and varieties with complex multiplication. The reader is introduced to generic Mumford-Tate groups and Shimura data, which are among the main tools used here. The generic Mumford-Tate groups of families of cyclic covers of the projective line are computed for a broad range of examples.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in