Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

Hyperbolic Partial Differential Equations [electronic resource] / by Serge Alinhac.

By: Contributor(s): Material type: TextTextSeries: UniversitextPublisher: New York, NY : Springer New York, 2009Description: XII, 150 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780387878232
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 515 23
LOC classification:
  • QA299.6-433
Online resources:
Contents:
Vector Fields and Integral Curves -- Operators and Systems in the Plane -- Nonlinear First Order Equations -- Conservation Laws in One-Space Dimension -- The Wave Equation -- Energy Inequalities for the Wave Equation -- Variable Coefficient Wave Equations and Systems.
In: Springer eBooksSummary: Serge Alinhac (1948–) received his PhD from l'Université Paris-Sud XI (Orsay). After teaching at l'Université Paris Diderot VII and Purdue University, he has been a professor of mathematics at l'Université Paris-Sud XI (Orsay) since 1978. He is the author of Blowup for Nonlinear Hyperbolic Equations (Birkhäuser, 1995) and Pseudo-differential Operators and the Nash–Moser Theorem (with P. Gérard, American Mathematical Society, 2007). His primary areas of research are linear and nonlinear partial differential equations. This excellent introduction to hyperbolic differential equations is devoted to linear equations and symmetric systems, as well as conservation laws. The book is divided into two parts. The first, which is intuitive and easy to visualize, includes all aspects of the theory involving vector fields and integral curves; the second describes the wave equation and its perturbations for two- or three-space dimensions. Over 100 exercises are included, as well as "do it yourself" instructions for the proofs of many theorems. Only an understanding of differential calculus is required. Notes at the end of the self-contained chapters, as well as references at the end of the book, enable ease-of-use for both the student and the independent researcher.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
E-BOOKS ISI Library, Kolkata Not for loan EB1614
Total holds: 0

Vector Fields and Integral Curves -- Operators and Systems in the Plane -- Nonlinear First Order Equations -- Conservation Laws in One-Space Dimension -- The Wave Equation -- Energy Inequalities for the Wave Equation -- Variable Coefficient Wave Equations and Systems.

Serge Alinhac (1948–) received his PhD from l'Université Paris-Sud XI (Orsay). After teaching at l'Université Paris Diderot VII and Purdue University, he has been a professor of mathematics at l'Université Paris-Sud XI (Orsay) since 1978. He is the author of Blowup for Nonlinear Hyperbolic Equations (Birkhäuser, 1995) and Pseudo-differential Operators and the Nash–Moser Theorem (with P. Gérard, American Mathematical Society, 2007). His primary areas of research are linear and nonlinear partial differential equations. This excellent introduction to hyperbolic differential equations is devoted to linear equations and symmetric systems, as well as conservation laws. The book is divided into two parts. The first, which is intuitive and easy to visualize, includes all aspects of the theory involving vector fields and integral curves; the second describes the wave equation and its perturbations for two- or three-space dimensions. Over 100 exercises are included, as well as "do it yourself" instructions for the proofs of many theorems. Only an understanding of differential calculus is required. Notes at the end of the self-contained chapters, as well as references at the end of the book, enable ease-of-use for both the student and the independent researcher.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in