Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Image from Google Jackets

K3 Surfaces and Their Moduli [electronic resource] / edited by Carel Faber, Gavril Farkas, Gerard van der Geer.

Contributor(s): Material type: TextTextSeries: Progress in Mathematics ; 315Publisher: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016Description: IX, 399 p. 14 illus., 3 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319299594
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 516.35 23
LOC classification:
  • QA564-609
Online resources:
Contents:
Introduction -- Samuel Boissière, Andrea Cattaneo, Marc Nieper-Wisskirchen, and Alessandra Sarti: The automorphism group of the Hilbert scheme of two points on a generic projective K3 surface -- Igor Dolgachev: Orbital counting of curves on algebraic surfaces and sphere packings -- V. Gritsenko and K. Hulek: Moduli of polarized Enriques surfaces -- Brendan Hassett and Yuri Tschinkel: Extremal rays and automorphisms of holomorphic symplectic varieties -- Gert Heckman and Sander Rieken: An odd presentation for W(E_6) -- S. Katz, A. Klemm, and R. Pandharipande, with an appendix by R. P. Thomas: On the motivic stable pairs invariants of K3 surfaces -- Shigeyuki Kondö: The Igusa quartic and Borcherds products -- Christian Liedtke: Lectures on supersingular K3 surfaces and the crystalline Torelli theorem -- Daisuke Matsushita: On deformations of Lagrangian fibrations -- G. Oberdieck and R. Pandharipande: Curve counting on K3 x E, the Igusa cusp form X_10, and descendent integration -- Keiji Oguiso: Simple abelian varieties and primitive automorphisms of null entropy of surfaces -- Ichiro Shimada: The automorphism groups of certain singular K3 surfaces and an Enriques surface -- Alessandro Verra: Geometry of genus 8 Nikulin surfaces and rationality of their moduli -- Claire Voisin: Remarks and questions on coisotropic subvarieties and 0-cycles of hyper-Kähler varieties.
In: Springer eBooksSummary: This book provides an overview of the latest developments concerning the moduli of K3 surfaces. It is aimed at algebraic geometers, but is also of interest to number theorists and theoretical physicists, and continues the tradition of related volumes like “The Moduli Space of Curves” and “Moduli of Abelian Varieties,” which originated from conferences on the islands Texel and Schiermonnikoog and which have become classics. K3 surfaces and their moduli form a central topic in algebraic geometry and arithmetic geometry, and have recently attracted a lot of attention from both mathematicians and theoretical physicists. Advances in this field often result from mixing sophisticated techniques from algebraic geometry, lattice theory, number theory, and dynamical systems. The topic has received significant impetus due to recent breakthroughs on the Tate conjecture, the study of stability conditions and derived categories, and links with mirror symmetry and string theory. At the same time, the theory of irreducible holomorphic symplectic varieties, the higher dimensional analogues of K3 surfaces, has become a mainstream topic in algebraic geometry. Contributors: S. Boissière, A. Cattaneo, I. Dolgachev, V. Gritsenko, B. Hassett, G. Heckman, K. Hulek, S. Katz, A. Klemm, S. Kondo, C. Liedtke, D. Matsushita, M. Nieper-Wisskirchen, G. Oberdieck, K. Oguiso, R. Pandharipande, S. Rieken, A. Sarti, I. Shimada, R. P. Thomas, Y. Tschinkel, A. Verra, C. Voisin.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Status Date due Barcode Item holds
E-BOOKS ISI Library, Kolkata Not for loan EB1729
Total holds: 0

Introduction -- Samuel Boissière, Andrea Cattaneo, Marc Nieper-Wisskirchen, and Alessandra Sarti: The automorphism group of the Hilbert scheme of two points on a generic projective K3 surface -- Igor Dolgachev: Orbital counting of curves on algebraic surfaces and sphere packings -- V. Gritsenko and K. Hulek: Moduli of polarized Enriques surfaces -- Brendan Hassett and Yuri Tschinkel: Extremal rays and automorphisms of holomorphic symplectic varieties -- Gert Heckman and Sander Rieken: An odd presentation for W(E_6) -- S. Katz, A. Klemm, and R. Pandharipande, with an appendix by R. P. Thomas: On the motivic stable pairs invariants of K3 surfaces -- Shigeyuki Kondö: The Igusa quartic and Borcherds products -- Christian Liedtke: Lectures on supersingular K3 surfaces and the crystalline Torelli theorem -- Daisuke Matsushita: On deformations of Lagrangian fibrations -- G. Oberdieck and R. Pandharipande: Curve counting on K3 x E, the Igusa cusp form X_10, and descendent integration -- Keiji Oguiso: Simple abelian varieties and primitive automorphisms of null entropy of surfaces -- Ichiro Shimada: The automorphism groups of certain singular K3 surfaces and an Enriques surface -- Alessandro Verra: Geometry of genus 8 Nikulin surfaces and rationality of their moduli -- Claire Voisin: Remarks and questions on coisotropic subvarieties and 0-cycles of hyper-Kähler varieties.

This book provides an overview of the latest developments concerning the moduli of K3 surfaces. It is aimed at algebraic geometers, but is also of interest to number theorists and theoretical physicists, and continues the tradition of related volumes like “The Moduli Space of Curves” and “Moduli of Abelian Varieties,” which originated from conferences on the islands Texel and Schiermonnikoog and which have become classics. K3 surfaces and their moduli form a central topic in algebraic geometry and arithmetic geometry, and have recently attracted a lot of attention from both mathematicians and theoretical physicists. Advances in this field often result from mixing sophisticated techniques from algebraic geometry, lattice theory, number theory, and dynamical systems. The topic has received significant impetus due to recent breakthroughs on the Tate conjecture, the study of stability conditions and derived categories, and links with mirror symmetry and string theory. At the same time, the theory of irreducible holomorphic symplectic varieties, the higher dimensional analogues of K3 surfaces, has become a mainstream topic in algebraic geometry. Contributors: S. Boissière, A. Cattaneo, I. Dolgachev, V. Gritsenko, B. Hassett, G. Heckman, K. Hulek, S. Katz, A. Klemm, S. Kondo, C. Liedtke, D. Matsushita, M. Nieper-Wisskirchen, G. Oberdieck, K. Oguiso, R. Pandharipande, S. Rieken, A. Sarti, I. Shimada, R. P. Thomas, Y. Tschinkel, A. Verra, C. Voisin.

There are no comments on this title.

to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in