Online Public Access Catalogue (OPAC)
Library,Documentation and Information Science Division

“A research journal serves that narrow

borderland which separates the known from the unknown”

-P.C.Mahalanobis


Normal view MARC view ISBD view

Maximum Principles and Geometric Applications [electronic resource] / by Luis J. Alías, Paolo Mastrolia, Marco Rigoli.

By: Alías, Luis J [author.].
Contributor(s): Mastrolia, Paolo [author.] | Rigoli, Marco [author.] | SpringerLink (Online service).
Material type: TextTextSeries: Springer Monographs in Mathematics: Publisher: Cham : Springer International Publishing : Imprint: Springer, 2016Edition: 1st ed. 2016.Description: XXVII, 570 p. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9783319243375.Subject(s): Global analysis | Differential equations, partial | Geometry | Global Analysis and Analysis on Manifolds | Partial Differential Equations | GeometryAdditional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification: 514.74 Online resources: Click here to access online
Contents:
A crash course in Riemannian geometry -- The Omori-Yau maximum principle -- New forms of the maximum principle -- Sufficient conditions for the validity of the weak maximum principle -- Miscellany results for submanifolds -- Applications to hypersurfaces -- Hypersurfaces in warped products -- Applications to Ricci Solitons -- Spacelike hypersurfaces in Lorentzian spacetimes.
In: Springer eBooksSummary: This monograph presents an introduction to some geometric and analytic aspects of the maximum principle. In doing so, it analyses with great detail the mathematical tools and geometric foundations needed to develop the various new forms that are presented in the first chapters of the book. In particular, a generalization of the Omori-Yau maximum principle to a wide class of differential operators is given, as well as a corresponding weak maximum principle and its equivalent open form and parabolicity as a special stronger formulation of the latter.  In the second part, the attention focuses on a wide range of applications, mainly to geometric problems, but also on some analytic (especially PDEs) questions including: the geometry of submanifolds, hypersurfaces in Riemannian and Lorentzian targets, Ricci solitons, Liouville theorems, uniqueness of solutions of Lichnerowicz-type PDEs and so on. Maximum Principles and Geometric Applications is written in an easy style making it accessible to beginners. The reader is guided with a detailed presentation of some topics of Riemannian geometry that are usually not covered in textbooks. Furthermore, many of the results and even proofs of known results are new and lead to the frontiers of a contemporary and active field of research.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Call number Status Date due Barcode Item holds
E-BOOKS E-BOOKS ISI Library, Kolkata
 
Available EB1870
Total holds: 0

A crash course in Riemannian geometry -- The Omori-Yau maximum principle -- New forms of the maximum principle -- Sufficient conditions for the validity of the weak maximum principle -- Miscellany results for submanifolds -- Applications to hypersurfaces -- Hypersurfaces in warped products -- Applications to Ricci Solitons -- Spacelike hypersurfaces in Lorentzian spacetimes.

This monograph presents an introduction to some geometric and analytic aspects of the maximum principle. In doing so, it analyses with great detail the mathematical tools and geometric foundations needed to develop the various new forms that are presented in the first chapters of the book. In particular, a generalization of the Omori-Yau maximum principle to a wide class of differential operators is given, as well as a corresponding weak maximum principle and its equivalent open form and parabolicity as a special stronger formulation of the latter.  In the second part, the attention focuses on a wide range of applications, mainly to geometric problems, but also on some analytic (especially PDEs) questions including: the geometry of submanifolds, hypersurfaces in Riemannian and Lorentzian targets, Ricci solitons, Liouville theorems, uniqueness of solutions of Lichnerowicz-type PDEs and so on. Maximum Principles and Geometric Applications is written in an easy style making it accessible to beginners. The reader is guided with a detailed presentation of some topics of Riemannian geometry that are usually not covered in textbooks. Furthermore, many of the results and even proofs of known results are new and lead to the frontiers of a contemporary and active field of research.

There are no comments for this item.

Log in to your account to post a comment.
Library, Documentation and Information Science Division, Indian Statistical Institute, 203 B T Road, Kolkata 700108, INDIA
Phone no. 91-33-2575 2100, Fax no. 91-33-2578 1412, ksatpathy@isical.ac.in


Visitor Counter